A Note on the Domination Number of the Cartesian Products of Paths and Cycles
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 275
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Using algebraic approach we implement a constant time algorithm for computing the domination numbers of the Cartesian products of paths and cycles. Closed formulas are given for domination numbers $\gamma(P_n\Box C_k)$ (for $k\leq 11$, $n \in {\mathbb N}$) and domination numbers $\gamma(C_n\Box P_k)$ and $\gamma(C_n\Box C_k)$ (for $k\leq7$, $n \in {\mathbb N}$).
Classification :
05C25 05C69 05C85 68R10
Keywords: Grid graph, Torus, Graph domination, Path algebra, Constant time algorithm
Keywords: Grid graph, Torus, Graph domination, Path algebra, Constant time algorithm
@article{KJM_2013_37_2_a6,
author = {Polona Pavli\v{c} and Janez \v{Z}erovnik},
title = {A {Note} on the {Domination} {Number} of the {Cartesian} {Products} of {Paths} and {Cycles}},
journal = {Kragujevac Journal of Mathematics},
pages = {275 },
year = {2013},
volume = {37},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a6/}
}
Polona Pavlič; Janez Žerovnik. A Note on the Domination Number of the Cartesian Products of Paths and Cycles. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 275 . http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a6/