The $\chi^{2I}$ Convergent Sequence Spaces Defined by a Moduli
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 375

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we introduce the sequence spaces $\chi^{2I}_{F}$ and $\Lambda^{2I}_{F}$ for the sequence of moduli $F=\left(f_{mn}\right)$ and study some of the general properties of these spaces.
Classification : 40A05 40C05 40D05
Keywords: Analytic sequence, Ideal, Filter, Moduli, Lipschitz function, I-convergent, Monotone, Solid, Double sequences, $\chi^{2I}$ sequence
@article{KJM_2013_37_2_a17,
     author = {N. Subramanian and P. Thirunavukkarasu and R. Babu},
     title = {The $\chi^{2I}$ {Convergent} {Sequence} {Spaces} {Defined} by a {Moduli}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {375 },
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a17/}
}
TY  - JOUR
AU  - N. Subramanian
AU  - P. Thirunavukkarasu
AU  - R. Babu
TI  - The $\chi^{2I}$ Convergent Sequence Spaces Defined by a Moduli
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 375 
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a17/
LA  - en
ID  - KJM_2013_37_2_a17
ER  - 
%0 Journal Article
%A N. Subramanian
%A P. Thirunavukkarasu
%A R. Babu
%T The $\chi^{2I}$ Convergent Sequence Spaces Defined by a Moduli
%J Kragujevac Journal of Mathematics
%D 2013
%P 375 
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a17/
%G en
%F KJM_2013_37_2_a17
N. Subramanian; P. Thirunavukkarasu; R. Babu. The $\chi^{2I}$ Convergent Sequence Spaces Defined by a Moduli. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 2, p. 375 . http://geodesic.mathdoc.fr/item/KJM_2013_37_2_a17/