Extremely Irregular Graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The irregularity of a graph $G$ is defined as $irr(G) =\sum |d(x)-d(y)|$ where $d(x)$ is the degree of vertex $x$ and the summation embraces all pairs of adjacent vertices of $G$. We characterize the graphs minimum and maximum values of $irr$.
Classification : 05C07 05C05
Keywords: Irregularity (of graph), Albertson index, third Zagreb index, degree (of vertex).
@article{KJM_2013_37_1_a9,
     author = {M. Tavakoli and F. Rahbarnia and M. Mirzavaziri and A. R. Ashrafi and I. Gutman},
     title = {Extremely {Irregular} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {135 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/}
}
TY  - JOUR
AU  - M. Tavakoli
AU  - F. Rahbarnia
AU  - M. Mirzavaziri
AU  - A. R. Ashrafi
AU  - I. Gutman
TI  - Extremely Irregular Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 135 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/
LA  - en
ID  - KJM_2013_37_1_a9
ER  - 
%0 Journal Article
%A M. Tavakoli
%A F. Rahbarnia
%A M. Mirzavaziri
%A A. R. Ashrafi
%A I. Gutman
%T Extremely Irregular Graphs
%J Kragujevac Journal of Mathematics
%D 2013
%P 135 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/
%G en
%F KJM_2013_37_1_a9
M. Tavakoli; F. Rahbarnia; M. Mirzavaziri; A. R. Ashrafi; I. Gutman. Extremely Irregular Graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/