Extremely Irregular Graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The irregularity of a graph $G$ is defined as $irr(G) =\sum |d(x)-d(y)|$ where $d(x)$ is the degree of vertex $x$ and the summation embraces all pairs of adjacent vertices of $G$. We characterize the graphs minimum and maximum values of $irr$.
Classification :
05C07 05C05
Keywords: Irregularity (of graph), Albertson index, third Zagreb index, degree (of vertex).
Keywords: Irregularity (of graph), Albertson index, third Zagreb index, degree (of vertex).
@article{KJM_2013_37_1_a9,
author = {M. Tavakoli and F. Rahbarnia and M. Mirzavaziri and A. R. Ashrafi and I. Gutman},
title = {Extremely {Irregular} {Graphs}},
journal = {Kragujevac Journal of Mathematics},
pages = {135 },
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/}
}
TY - JOUR AU - M. Tavakoli AU - F. Rahbarnia AU - M. Mirzavaziri AU - A. R. Ashrafi AU - I. Gutman TI - Extremely Irregular Graphs JO - Kragujevac Journal of Mathematics PY - 2013 SP - 135 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/ LA - en ID - KJM_2013_37_1_a9 ER -
M. Tavakoli; F. Rahbarnia; M. Mirzavaziri; A. R. Ashrafi; I. Gutman. Extremely Irregular Graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/