Extremely Irregular Graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The irregularity of a graph $G$ is defined as $irr(G) =\sum |d(x)-d(y)|$ where $d(x)$ is the degree of vertex $x$ and the summation embraces all pairs of adjacent vertices of $G$. We characterize the graphs minimum and maximum values of $irr$.
Classification : 05C07 05C05
Keywords: Irregularity (of graph), Albertson index, third Zagreb index, degree (of vertex).
@article{KJM_2013_37_1_a9,
     author = {M. Tavakoli and F. Rahbarnia and M. Mirzavaziri and A. R. Ashrafi and I. Gutman},
     title = {Extremely {Irregular} {Graphs}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {135 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/}
}
TY  - JOUR
AU  - M. Tavakoli
AU  - F. Rahbarnia
AU  - M. Mirzavaziri
AU  - A. R. Ashrafi
AU  - I. Gutman
TI  - Extremely Irregular Graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 135 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/
LA  - en
ID  - KJM_2013_37_1_a9
ER  - 
%0 Journal Article
%A M. Tavakoli
%A F. Rahbarnia
%A M. Mirzavaziri
%A A. R. Ashrafi
%A I. Gutman
%T Extremely Irregular Graphs
%J Kragujevac Journal of Mathematics
%D 2013
%P 135 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/
%G en
%F KJM_2013_37_1_a9
M. Tavakoli; F. Rahbarnia; M. Mirzavaziri; A. R. Ashrafi; I. Gutman. Extremely Irregular Graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 135 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a9/