A coupled coincidence point theorem in partially ordered metric spaces
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 103 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove a coupled coincidence point theorem in partially ordered metric spaces for mappings $F: X \times X \rightarrow X$ having the $g$-mixed monotone property. The main result of this paper extends and improves the corresponding results in [6][10][8][4]. Some examples are given to illustrate our work.
Classification : 54H25 47H10
Keywords: Coupled coincidence point, mixed monotone, O-compatible mappings, partially ordered set.
@article{KJM_2013_37_1_a6,
     author = {Nguyen V. Can and Vasile Berinde and Nguyen V. Luong and Nguyen X. Thuan},
     title = {A coupled coincidence point theorem in partially ordered metric spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {103 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/}
}
TY  - JOUR
AU  - Nguyen V. Can
AU  - Vasile Berinde
AU  - Nguyen V. Luong
AU  - Nguyen X. Thuan
TI  - A coupled coincidence point theorem in partially ordered metric spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 103 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/
LA  - en
ID  - KJM_2013_37_1_a6
ER  - 
%0 Journal Article
%A Nguyen V. Can
%A Vasile Berinde
%A Nguyen V. Luong
%A Nguyen X. Thuan
%T A coupled coincidence point theorem in partially ordered metric spaces
%J Kragujevac Journal of Mathematics
%D 2013
%P 103 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/
%G en
%F KJM_2013_37_1_a6
Nguyen V. Can; Vasile Berinde; Nguyen V. Luong; Nguyen X. Thuan. A coupled coincidence point theorem in partially ordered metric spaces. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 103 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/