A coupled coincidence point theorem in partially ordered metric spaces
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 103

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove a coupled coincidence point theorem in partially ordered metric spaces for mappings $F: X \times X \rightarrow X$ having the $g$-mixed monotone property. The main result of this paper extends and improves the corresponding results in [6][10][8][4]. Some examples are given to illustrate our work.
Classification : 54H25 47H10
Keywords: Coupled coincidence point, mixed monotone, O-compatible mappings, partially ordered set.
@article{KJM_2013_37_1_a6,
     author = {Nguyen V. Can and Vasile Berinde and Nguyen V. Luong and Nguyen X. Thuan},
     title = {A coupled coincidence point theorem in partially ordered metric spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {103 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/}
}
TY  - JOUR
AU  - Nguyen V. Can
AU  - Vasile Berinde
AU  - Nguyen V. Luong
AU  - Nguyen X. Thuan
TI  - A coupled coincidence point theorem in partially ordered metric spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 103 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/
LA  - en
ID  - KJM_2013_37_1_a6
ER  - 
%0 Journal Article
%A Nguyen V. Can
%A Vasile Berinde
%A Nguyen V. Luong
%A Nguyen X. Thuan
%T A coupled coincidence point theorem in partially ordered metric spaces
%J Kragujevac Journal of Mathematics
%D 2013
%P 103 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/
%G en
%F KJM_2013_37_1_a6
Nguyen V. Can; Vasile Berinde; Nguyen V. Luong; Nguyen X. Thuan. A coupled coincidence point theorem in partially ordered metric spaces. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 103 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a6/