On embeddings, traces and multipliers in harmonic function spaces
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 45
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper is devoted to certain applications of classical Whitney decomposition of the upper half space $\mathbb R^{n+1}_+$ to various problems in harmonic function spaces in the upper half space. We obtain sharp new assertions on embeddings, distances and traces for various spaces of harmonic functions. New sharp theorems on multipliers for harmonic function spaces in the unit ball are also presented.
Classification :
42B15 46E35
Keywords: Harmonic functions, distances, traces, embedding theorems, multipliers, Whitney decomposition.
Keywords: Harmonic functions, distances, traces, embedding theorems, multipliers, Whitney decomposition.
@article{KJM_2013_37_1_a3,
author = {Milo\v{s} Arsenovi\'c and Romi F. Shamoyan},
title = {On embeddings, traces and multipliers in harmonic function spaces},
journal = {Kragujevac Journal of Mathematics},
pages = {45 },
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a3/}
}
Miloš Arsenović; Romi F. Shamoyan. On embeddings, traces and multipliers in harmonic function spaces. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 45 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a3/