Submanifold theory and parallel transport
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 33 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A geometrical interpretation of semi-parallel submanifolds is presented in terms of parallel transport of the second fundamental form around an infinitesimal coordinate parallelogram. Further, a new scalar curvature invariant of the immersion is introduced. Isotropy of this invariant at every point means that the submanifold is pseudo-parallel.
Classification : 53A55 53B20 53C42
Keywords: Submanifolds, semi-parallel, pseudo-parallel, parallel transport.
@article{KJM_2013_37_1_a2,
     author = {Franki Dillen and Johan Fastenakels and Stefan Haesen and Joeri Van der Veken and Leopold Verstraelen},
     title = {Submanifold theory and parallel transport},
     journal = {Kragujevac Journal of Mathematics},
     pages = {33 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/}
}
TY  - JOUR
AU  - Franki Dillen
AU  - Johan Fastenakels
AU  - Stefan Haesen
AU  - Joeri Van der Veken
AU  - Leopold Verstraelen
TI  - Submanifold theory and parallel transport
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 33 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/
LA  - en
ID  - KJM_2013_37_1_a2
ER  - 
%0 Journal Article
%A Franki Dillen
%A Johan Fastenakels
%A Stefan Haesen
%A Joeri Van der Veken
%A Leopold Verstraelen
%T Submanifold theory and parallel transport
%J Kragujevac Journal of Mathematics
%D 2013
%P 33 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/
%G en
%F KJM_2013_37_1_a2
Franki Dillen; Johan Fastenakels; Stefan Haesen; Joeri Van der Veken; Leopold Verstraelen. Submanifold theory and parallel transport. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 33 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/