Submanifold theory and parallel transport
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 33
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A geometrical interpretation of semi-parallel submanifolds is presented in terms of parallel transport of the second fundamental form around an infinitesimal coordinate parallelogram. Further, a new scalar curvature invariant of the immersion is introduced. Isotropy of this invariant at every point means that the submanifold is pseudo-parallel.
Classification :
53A55 53B20 53C42
Keywords: Submanifolds, semi-parallel, pseudo-parallel, parallel transport.
Keywords: Submanifolds, semi-parallel, pseudo-parallel, parallel transport.
@article{KJM_2013_37_1_a2,
author = {Franki Dillen and Johan Fastenakels and Stefan Haesen and Joeri Van der Veken and Leopold Verstraelen},
title = {Submanifold theory and parallel transport},
journal = {Kragujevac Journal of Mathematics},
pages = {33 },
publisher = {mathdoc},
volume = {37},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/}
}
TY - JOUR AU - Franki Dillen AU - Johan Fastenakels AU - Stefan Haesen AU - Joeri Van der Veken AU - Leopold Verstraelen TI - Submanifold theory and parallel transport JO - Kragujevac Journal of Mathematics PY - 2013 SP - 33 VL - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/ LA - en ID - KJM_2013_37_1_a2 ER -
%0 Journal Article %A Franki Dillen %A Johan Fastenakels %A Stefan Haesen %A Joeri Van der Veken %A Leopold Verstraelen %T Submanifold theory and parallel transport %J Kragujevac Journal of Mathematics %D 2013 %P 33 %V 37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/ %G en %F KJM_2013_37_1_a2
Franki Dillen; Johan Fastenakels; Stefan Haesen; Joeri Van der Veken; Leopold Verstraelen. Submanifold theory and parallel transport. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 33 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a2/