$F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A function $f$ is called a $F$-Geometric mean labeling of a graph $G(V,E)$ if $f:V(G)\rightarrow\{1,2,3,\dots,q+1\}$ is injective and the induced function $f^*:E(G)\rightarrow\{1,2,3,\dots,q\}$ defined as $f^*(uv)=\left\lfloor \sqrt{f(u)f(v)} \right\rfloor,$ for all $uv\in E(G),$ is bijective. A graph that admits a $F$-Geometric mean labelling is called a $F$-Geometric mean graph. In this paper, we have discussed the $F$-Geometric mean labeling of some chain graphs and thorn graphs.
Classification : 05C78
Keywords: Labeling, $F$-Geometric mean labeling, $F$-Geometric mean graph.
@article{KJM_2013_37_1_a12,
     author = {A. Durai Baskar and S. Arockiaraj and B. Rajendran},
     title = {$F${-Geometric} {Mean} {Labeling} of some {Chain} {Graphs} and {Thorn} graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/}
}
TY  - JOUR
AU  - A. Durai Baskar
AU  - S. Arockiaraj
AU  - B. Rajendran
TI  - $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 163 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/
LA  - en
ID  - KJM_2013_37_1_a12
ER  - 
%0 Journal Article
%A A. Durai Baskar
%A S. Arockiaraj
%A B. Rajendran
%T $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
%J Kragujevac Journal of Mathematics
%D 2013
%P 163 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/
%G en
%F KJM_2013_37_1_a12
A. Durai Baskar; S. Arockiaraj; B. Rajendran. $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/