$F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A function $f$ is called a $F$-Geometric mean labeling of a graph $G(V,E)$ if $f:V(G)\rightarrow\{1,2,3,\dots,q+1\}$ is injective and the induced function $f^*:E(G)\rightarrow\{1,2,3,\dots,q\}$ defined as $f^*(uv)=\left\lfloor \sqrt{f(u)f(v)} \right\rfloor,$ for all $uv\in E(G),$ is bijective. A graph that admits a $F$-Geometric mean labelling is called a $F$-Geometric mean graph. In this paper, we have discussed the $F$-Geometric mean labeling of some chain graphs and thorn graphs.
Classification :
05C78
Keywords: Labeling, $F$-Geometric mean labeling, $F$-Geometric mean graph.
Keywords: Labeling, $F$-Geometric mean labeling, $F$-Geometric mean graph.
@article{KJM_2013_37_1_a12,
author = {A. Durai Baskar and S. Arockiaraj and B. Rajendran},
title = {$F${-Geometric} {Mean} {Labeling} of some {Chain} {Graphs} and {Thorn} graphs},
journal = {Kragujevac Journal of Mathematics},
pages = {163 },
year = {2013},
volume = {37},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/}
}
TY - JOUR AU - A. Durai Baskar AU - S. Arockiaraj AU - B. Rajendran TI - $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs JO - Kragujevac Journal of Mathematics PY - 2013 SP - 163 VL - 37 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/ LA - en ID - KJM_2013_37_1_a12 ER -
A. Durai Baskar; S. Arockiaraj; B. Rajendran. $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/