$F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A function $f$ is called a $F$-Geometric mean labeling of a graph $G(V,E)$ if $f:V(G)\rightarrow\{1,2,3,\dots,q+1\}$ is injective and the induced function $f^*:E(G)\rightarrow\{1,2,3,\dots,q\}$ defined as $f^*(uv)=\left\lfloor \sqrt{f(u)f(v)} \right\rfloor,$ for all $uv\in E(G),$ is bijective. A graph that admits a $F$-Geometric mean labelling is called a $F$-Geometric mean graph. In this paper, we have discussed the $F$-Geometric mean labeling of some chain graphs and thorn graphs.
Classification : 05C78
Keywords: Labeling, $F$-Geometric mean labeling, $F$-Geometric mean graph.
@article{KJM_2013_37_1_a12,
     author = {A. Durai Baskar and S. Arockiaraj and B. Rajendran},
     title = {$F${-Geometric} {Mean} {Labeling} of some {Chain} {Graphs} and {Thorn} graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/}
}
TY  - JOUR
AU  - A. Durai Baskar
AU  - S. Arockiaraj
AU  - B. Rajendran
TI  - $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 163 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/
LA  - en
ID  - KJM_2013_37_1_a12
ER  - 
%0 Journal Article
%A A. Durai Baskar
%A S. Arockiaraj
%A B. Rajendran
%T $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs
%J Kragujevac Journal of Mathematics
%D 2013
%P 163 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/
%G en
%F KJM_2013_37_1_a12
A. Durai Baskar; S. Arockiaraj; B. Rajendran. $F$-Geometric Mean Labeling of some Chain Graphs and Thorn graphs. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a12/