Ricci and Casorati principal directions of $\delta(2)$ Chen ideal submanifolds
Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 25

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that for $\delta(2)$ Chen ideal submanifolds in Euclidean spaces the (intrinsic) Ricci principal directions and the (extrinsic) Casorati principal directions coincide.
Classification : 53B20 53B25 53A07 53C42
Keywords: $\delta(2)$ Chen ideal submanifolds, Casorati curvature, Ricci principal directions, Casorati principal directions.
@article{KJM_2013_37_1_a1,
     author = {Simona Decu and Anica Panti\'c and Miroslava Petrovi\'c-Torga\v{s}ev and Leopold Verstraelen},
     title = {Ricci and {Casorati} principal directions of $\delta(2)$ {Chen} ideal submanifolds},
     journal = {Kragujevac Journal of Mathematics},
     pages = {25 },
     publisher = {mathdoc},
     volume = {37},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a1/}
}
TY  - JOUR
AU  - Simona Decu
AU  - Anica Pantić
AU  - Miroslava Petrović-Torgašev
AU  - Leopold Verstraelen
TI  - Ricci and Casorati principal directions of $\delta(2)$ Chen ideal submanifolds
JO  - Kragujevac Journal of Mathematics
PY  - 2013
SP  - 25 
VL  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a1/
LA  - en
ID  - KJM_2013_37_1_a1
ER  - 
%0 Journal Article
%A Simona Decu
%A Anica Pantić
%A Miroslava Petrović-Torgašev
%A Leopold Verstraelen
%T Ricci and Casorati principal directions of $\delta(2)$ Chen ideal submanifolds
%J Kragujevac Journal of Mathematics
%D 2013
%P 25 
%V 37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a1/
%G en
%F KJM_2013_37_1_a1
Simona Decu; Anica Pantić; Miroslava Petrović-Torgašev; Leopold Verstraelen. Ricci and Casorati principal directions of $\delta(2)$ Chen ideal submanifolds. Kragujevac Journal of Mathematics, Tome 37 (2013) no. 1, p. 25 . http://geodesic.mathdoc.fr/item/KJM_2013_37_1_a1/