A general subclass of close-to-convex functions
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 251
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this present work, we consider a general subclass $C^*[A,B]$ of close-to-convex functions, which denote by $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ in $U=\{z:|z|1\}$ and which satisfy the following condition: $\bigg|\frac{(zf'(z))'}{g'(z)}-1\bigg|\bigg|A-B\frac{(zf'(z))'}{g'(z)}\bigg|,\qquad (-1eqslant B
Classification :
30C45 30C50
Keywords: Analytic Functions, Univalent Function, Subordination, Convex, Close-to-Convex
Keywords: Analytic Functions, Univalent Function, Subordination, Convex, Close-to-Convex
@article{KJM_2012_36_2_a7,
author = {Liangpeng Xiong and Xiaoli Liu},
title = {A general subclass of close-to-convex functions},
journal = {Kragujevac Journal of Mathematics},
pages = {251 },
year = {2012},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a7/}
}
Liangpeng Xiong; Xiaoli Liu. A general subclass of close-to-convex functions. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 251 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a7/