A general subclass of close-to-convex functions
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 251
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this present work, we consider a general subclass $C^*[A,B]$ of close-to-convex functions, which denote by $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ in $U=\{z:|z|1\}$ and which satisfy the following condition: $\bigg|\frac{(zf'(z))'}{g'(z)}-1\bigg|\bigg|A-B\frac{(zf'(z))'}{g'(z)}\bigg|,\qquad (-1eqslant B
Classification :
30C45 30C50
Keywords: Analytic Functions, Univalent Function, Subordination, Convex, Close-to-Convex
Keywords: Analytic Functions, Univalent Function, Subordination, Convex, Close-to-Convex
@article{KJM_2012_36_2_a7,
author = {Liangpeng Xiong and Xiaoli Liu},
title = {A general subclass of close-to-convex functions},
journal = {Kragujevac Journal of Mathematics},
pages = {251 },
publisher = {mathdoc},
volume = {36},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a7/}
}
Liangpeng Xiong; Xiaoli Liu. A general subclass of close-to-convex functions. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 251 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a7/