Fixed point theorems in normed linear spaces using a generalized $Z$-type condition
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, a strong convergence theorem is proved for a generalized Mann type iteration scheme in normed linear spaces. We also consider two, two-step iteration schemes and prove the strong convergence of these iterations in normed linear spaces. We use a generalized $Z$-type condition to prove our results. Our results extend and improve upon, among others, the corresponding results proved by Berinde [1], Yildirim et al. [12] and Bosede [4].
Classification :
47H09 47H10
Keywords: Strong convergence, common fixed point, normed linear spaces
Keywords: Strong convergence, common fixed point, normed linear spaces
@article{KJM_2012_36_2_a3,
author = {Priya Raphael and Shaini Pulickakunnel},
title = {Fixed point theorems in normed linear spaces using a generalized $Z$-type condition},
journal = {Kragujevac Journal of Mathematics},
pages = {207 },
year = {2012},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/}
}
TY - JOUR AU - Priya Raphael AU - Shaini Pulickakunnel TI - Fixed point theorems in normed linear spaces using a generalized $Z$-type condition JO - Kragujevac Journal of Mathematics PY - 2012 SP - 207 VL - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/ LA - en ID - KJM_2012_36_2_a3 ER -
Priya Raphael; Shaini Pulickakunnel. Fixed point theorems in normed linear spaces using a generalized $Z$-type condition. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/