Fixed point theorems in normed linear spaces using a generalized $Z$-type condition
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, a strong convergence theorem is proved for a generalized Mann type iteration scheme in normed linear spaces. We also consider two, two-step iteration schemes and prove the strong convergence of these iterations in normed linear spaces. We use a generalized $Z$-type condition to prove our results. Our results extend and improve upon, among others, the corresponding results proved by Berinde [1], Yildirim et al. [12] and Bosede [4].
Classification :
47H09 47H10
Keywords: Strong convergence, common fixed point, normed linear spaces
Keywords: Strong convergence, common fixed point, normed linear spaces
@article{KJM_2012_36_2_a3,
author = {Priya Raphael and Shaini Pulickakunnel},
title = {Fixed point theorems in normed linear spaces using a generalized $Z$-type condition},
journal = {Kragujevac Journal of Mathematics},
pages = {207 },
publisher = {mathdoc},
volume = {36},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/}
}
TY - JOUR AU - Priya Raphael AU - Shaini Pulickakunnel TI - Fixed point theorems in normed linear spaces using a generalized $Z$-type condition JO - Kragujevac Journal of Mathematics PY - 2012 SP - 207 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/ LA - en ID - KJM_2012_36_2_a3 ER -
Priya Raphael; Shaini Pulickakunnel. Fixed point theorems in normed linear spaces using a generalized $Z$-type condition. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/