Fixed point theorems in normed linear spaces using a generalized $Z$-type condition
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, a strong convergence theorem is proved for a generalized Mann type iteration scheme in normed linear spaces. We also consider two, two-step iteration schemes and prove the strong convergence of these iterations in normed linear spaces. We use a generalized $Z$-type condition to prove our results. Our results extend and improve upon, among others, the corresponding results proved by Berinde [1], Yildirim et al. [12] and Bosede [4].
Classification : 47H09 47H10
Keywords: Strong convergence, common fixed point, normed linear spaces
@article{KJM_2012_36_2_a3,
     author = {Priya Raphael and Shaini Pulickakunnel},
     title = {Fixed point theorems in normed linear spaces using a generalized $Z$-type condition},
     journal = {Kragujevac Journal of Mathematics},
     pages = {207 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/}
}
TY  - JOUR
AU  - Priya Raphael
AU  - Shaini Pulickakunnel
TI  - Fixed point theorems in normed linear spaces using a generalized $Z$-type condition
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 207 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/
LA  - en
ID  - KJM_2012_36_2_a3
ER  - 
%0 Journal Article
%A Priya Raphael
%A Shaini Pulickakunnel
%T Fixed point theorems in normed linear spaces using a generalized $Z$-type condition
%J Kragujevac Journal of Mathematics
%D 2012
%P 207 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/
%G en
%F KJM_2012_36_2_a3
Priya Raphael; Shaini Pulickakunnel. Fixed point theorems in normed linear spaces using a generalized $Z$-type condition. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 207 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a3/