$k$-domination on hexagonal cactus chains
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we use the concept of $k$-domination, where $k\geq 1$. We determine minimum $k$-dominating sets and $k$-domination numbers of three special types of hexagonal cactus chains. Those are para-, meta- and ortho-chains. For an arbitrary hexagonal chain $G_h$ of length $h\geq 1$ we establish the lower and the upper bound for $k$-domination number $\gamma_k$. As a consequence, we find the extremal chains due to $\gamma_k$.
Classification :
05C30
Keywords: $k$-dominating set, $k$-domination number, ortho-chain, para-chain, meta-chain.
Keywords: $k$-dominating set, $k$-domination number, ortho-chain, para-chain, meta-chain.
@article{KJM_2012_36_2_a16,
author = {Snje\v{z}ana Majstorovi\'c and Tomislav Do\v{s}li\'c and Antoaneta Klobu\v{c}ar},
title = {$k$-domination on hexagonal cactus chains},
journal = {Kragujevac Journal of Mathematics},
pages = {335 },
year = {2012},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/}
}
Snježana Majstorović; Tomislav Došlić; Antoaneta Klobučar. $k$-domination on hexagonal cactus chains. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/