$k$-domination on hexagonal cactus chains
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we use the concept of $k$-domination, where $k\geq 1$. We determine minimum $k$-dominating sets and $k$-domination numbers of three special types of hexagonal cactus chains. Those are para-, meta- and ortho-chains. For an arbitrary hexagonal chain $G_h$ of length $h\geq 1$ we establish the lower and the upper bound for $k$-domination number $\gamma_k$. As a consequence, we find the extremal chains due to $\gamma_k$.
Classification : 05C30
Keywords: $k$-dominating set, $k$-domination number, ortho-chain, para-chain, meta-chain.
@article{KJM_2012_36_2_a16,
     author = {Snje\v{z}ana Majstorovi\'c and Tomislav Do\v{s}li\'c and Antoaneta Klobu\v{c}ar},
     title = {$k$-domination on hexagonal cactus chains},
     journal = {Kragujevac Journal of Mathematics},
     pages = {335 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/}
}
TY  - JOUR
AU  - Snježana Majstorović
AU  - Tomislav Došlić
AU  - Antoaneta Klobučar
TI  - $k$-domination on hexagonal cactus chains
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 335 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/
LA  - en
ID  - KJM_2012_36_2_a16
ER  - 
%0 Journal Article
%A Snježana Majstorović
%A Tomislav Došlić
%A Antoaneta Klobučar
%T $k$-domination on hexagonal cactus chains
%J Kragujevac Journal of Mathematics
%D 2012
%P 335 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/
%G en
%F KJM_2012_36_2_a16
Snježana Majstorović; Tomislav Došlić; Antoaneta Klobučar. $k$-domination on hexagonal cactus chains. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/