$k$-domination on hexagonal cactus chains
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we use the concept of $k$-domination, where $k\geq 1$. We determine minimum $k$-dominating sets and $k$-domination numbers of three special types of hexagonal cactus chains. Those are para-, meta- and ortho-chains. For an arbitrary hexagonal chain $G_h$ of length $h\geq 1$ we establish the lower and the upper bound for $k$-domination number $\gamma_k$. As a consequence, we find the extremal chains due to $\gamma_k$.
Classification : 05C30
Keywords: $k$-dominating set, $k$-domination number, ortho-chain, para-chain, meta-chain.
@article{KJM_2012_36_2_a16,
     author = {Snje\v{z}ana Majstorovi\'c and Tomislav Do\v{s}li\'c and Antoaneta Klobu\v{c}ar},
     title = {$k$-domination on hexagonal cactus chains},
     journal = {Kragujevac Journal of Mathematics},
     pages = {335 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/}
}
TY  - JOUR
AU  - Snježana Majstorović
AU  - Tomislav Došlić
AU  - Antoaneta Klobučar
TI  - $k$-domination on hexagonal cactus chains
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 335 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/
LA  - en
ID  - KJM_2012_36_2_a16
ER  - 
%0 Journal Article
%A Snježana Majstorović
%A Tomislav Došlić
%A Antoaneta Klobučar
%T $k$-domination on hexagonal cactus chains
%J Kragujevac Journal of Mathematics
%D 2012
%P 335 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/
%G en
%F KJM_2012_36_2_a16
Snježana Majstorović; Tomislav Došlić; Antoaneta Klobučar. $k$-domination on hexagonal cactus chains. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 335 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a16/