On the $d_2$-Splitting Graph of a Graph
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 315

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

For a positive integer $d$ and a vertex $v$ of a graph $G$, the $d^{th}$ degree of $v$ in $G$, denoted by $d_d (v)$, is defined as the number of vertices at a distance $d$ away from $v$. Hence $d_1(v) = d(v)$ and $d_2(v)$ means number of vertices at a distance 2 away from $v.$ A graph $G$ is said to be $(2,k )$-regular if $d_2 (v) = k$, for all $v$ in $G.$ In this paper we define $d_2$-splitting graph of a graph and we study some properties of $d_2$-splitting graph.
Classification : 05C12
Keywords: Complete graph, trees, bipartite, complete bipartite, Eulerian graph, Hamiltonian graph, Connectivity of a graph, $(2,k)$ regular graph, $(d,k)$ regular graph
@article{KJM_2012_36_2_a14,
     author = {N. R. Santhi Maheswari and C. Sekar},
     title = {On the $d_2${-Splitting} {Graph} of a {Graph}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {315 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a14/}
}
TY  - JOUR
AU  - N. R. Santhi Maheswari
AU  - C. Sekar
TI  - On the $d_2$-Splitting Graph of a Graph
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 315 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a14/
LA  - en
ID  - KJM_2012_36_2_a14
ER  - 
%0 Journal Article
%A N. R. Santhi Maheswari
%A C. Sekar
%T On the $d_2$-Splitting Graph of a Graph
%J Kragujevac Journal of Mathematics
%D 2012
%P 315 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a14/
%G en
%F KJM_2012_36_2_a14
N. R. Santhi Maheswari; C. Sekar. On the $d_2$-Splitting Graph of a Graph. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 315 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a14/