Generalized Product Theorem for the Mellin Transform and Its Applications
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 287 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we introduce the generalized product theorem for the Mellin transform and we solve certain classes of singular integral equations with kernels coincided with conditions of this theorem. Moreover, new inversion techniques for $n$-th iterate of the $\mathcal{L}_2$-transform are obtained. A very simple inversion formula for the Widder potential transform is also given. @filename: kjom3602-12.pdf
Classification : 33E 44A 45E
Keywords: Mellin transform, singular integral equation, $n$-th iterate of the $\mathcal{L}_2$-transform.
@article{KJM_2012_36_2_a11,
     author = {Alireza Ansari},
     title = {Generalized {Product} {Theorem} for the {Mellin} {Transform} and {Its} {Applications}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {287 },
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a11/}
}
TY  - JOUR
AU  - Alireza Ansari
TI  - Generalized Product Theorem for the Mellin Transform and Its Applications
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 287 
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a11/
LA  - en
ID  - KJM_2012_36_2_a11
ER  - 
%0 Journal Article
%A Alireza Ansari
%T Generalized Product Theorem for the Mellin Transform and Its Applications
%J Kragujevac Journal of Mathematics
%D 2012
%P 287 
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a11/
%G en
%F KJM_2012_36_2_a11
Alireza Ansari. Generalized Product Theorem for the Mellin Transform and Its Applications. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 287 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a11/