On positive, linear and quadratic Boolean functions
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 177
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In [1], [2] it was proved that a function $f:\{0,1\}^n\longrightarrow\{0,1\}$ is positive if and only if it is increasing, it is linear if and only if it satisfies \begin{equation}abel{(*)} f(X)\+f(Y)=f(XY)\+f(X\+Y) ag{*} \end{equation} and it is quadratic if and only if it satisfies \begin{equation}abel{(**)} f(XY\+XZ\+YZ)eq f(X)\+f(Y)\+f(Z).ag{**} \end{equation} In this paper we work with an arbitrary Boolean algebra $\B$ and with arbitrary Boolean functions $f:\B^n\longrightarrow\B$, that is, algebraic functions over $\B$. We prove a refined generalization of the characterization of positive functions, we prove that a Boolean function satisfies \eqref{(*)} if and only if it is linear in each variable, and we prove that every quadratic Boolean function satisfies \eqref{(**)}. Moreover, a Boolean function $f:{\B}^2\longrightarrow\B$ is linear if and only if it satisfies \eqref{(*)} and a Boolean function $f:\B^3\longrightarrow\B$ is quadratic if and only if it satisfies \eqref{(**)}.
Classification :
Primary06E30
Keywords: Boolean function, positive linear function, linear Boolean function, quadratic Boolean function
Keywords: Boolean function, positive linear function, linear Boolean function, quadratic Boolean function
@article{KJM_2012_36_2_a0,
author = {Sergiu Rudeanu},
title = {On positive, linear and quadratic {Boolean} functions},
journal = {Kragujevac Journal of Mathematics},
pages = {177 },
year = {2012},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a0/}
}
Sergiu Rudeanu. On positive, linear and quadratic Boolean functions. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 2, p. 177 . http://geodesic.mathdoc.fr/item/KJM_2012_36_2_a0/