Error bound of certain Gaussian quadrature rules for trigonometric polynomials
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 63
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we give error bound for quadrature rules of Gaussian type for trigonometric polynomials with respect to the weight function $w(x)=1+\cos x$, $x\in(-i,i)$, for $2i$-periodic integrand, analytic in a circular domain. Obtained theoretical bound is checked and illustrated on some numerical examples.
Classification :
65D32 42A05 42C05
Keywords: Trigonometric degree of exactness, Gaussian quadrature rule, analytic function, error bound.
Keywords: Trigonometric degree of exactness, Gaussian quadrature rule, analytic function, error bound.
@article{KJM_2012_36_1_a6,
author = {Marija P. Stani\'c and Aleksandar S. Cvetkovi\'c and Tatjana V. Tomovi\'c},
title = {Error bound of certain {Gaussian} quadrature rules for trigonometric polynomials},
journal = {Kragujevac Journal of Mathematics},
pages = {63 },
year = {2012},
volume = {36},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a6/}
}
TY - JOUR AU - Marija P. Stanić AU - Aleksandar S. Cvetković AU - Tatjana V. Tomović TI - Error bound of certain Gaussian quadrature rules for trigonometric polynomials JO - Kragujevac Journal of Mathematics PY - 2012 SP - 63 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a6/ LA - en ID - KJM_2012_36_1_a6 ER -
%0 Journal Article %A Marija P. Stanić %A Aleksandar S. Cvetković %A Tatjana V. Tomović %T Error bound of certain Gaussian quadrature rules for trigonometric polynomials %J Kragujevac Journal of Mathematics %D 2012 %P 63 %V 36 %N 1 %U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a6/ %G en %F KJM_2012_36_1_a6
Marija P. Stanić; Aleksandar S. Cvetković; Tatjana V. Tomović. Error bound of certain Gaussian quadrature rules for trigonometric polynomials. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 63 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a6/