On $(p,q)$-th order of a function of two complex variables analytic in the unit polydisc
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we study the maximum modulus and the coefficients of the power series expansion of a function of two complex variables analytic in the unit polydisc.
Classification : 32A15
Keywords: Analytic function, $(p,q)$-th order, lower $(p,q)$-th order, maximum modulus, unit polydisc
@article{KJM_2012_36_1_a16,
     author = {Ratan Kumar Dutta},
     title = {On $(p,q)$-th order of a function of two complex variables analytic in the unit polydisc},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 },
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a16/}
}
TY  - JOUR
AU  - Ratan Kumar Dutta
TI  - On $(p,q)$-th order of a function of two complex variables analytic in the unit polydisc
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 163 
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a16/
LA  - en
ID  - KJM_2012_36_1_a16
ER  - 
%0 Journal Article
%A Ratan Kumar Dutta
%T On $(p,q)$-th order of a function of two complex variables analytic in the unit polydisc
%J Kragujevac Journal of Mathematics
%D 2012
%P 163 
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a16/
%G en
%F KJM_2012_36_1_a16
Ratan Kumar Dutta. On $(p,q)$-th order of a function of two complex variables analytic in the unit polydisc. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 163 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a16/