Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $G(V,E)$ be a graph with $p$ vertices and $q$ edges. A graph $G$ is said to be odd mean if there exists a function $f:V(G)\rightarrow \{0,1,2,3,\dots,2q-1\}$ satisfying $f$ is $1-1$ and the induced map $f^*:E(G)\rightarrow\{1,3,5,\dots,2q-1\}$ defined by \begin{equation*} f^*(uv)=eft\{\begin{array}{ll} \frac{f(u)+f(v)}{2}\quad\mbox{if $f(u)+f(v)$ is even}
[2mm] \frac{f(u)+f(v)+1}{2}\quad\mbox{if $f(u)+f(v)$ is odd}\end{array}\right. \end{equation*} is a bijection. If a graph $G$ admits an odd mean labeling then $G$ is called an odd mean graph. In this paper we study the odd meanness of the class of graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$ and we prove that the graphs $P_{2r,m}, P_{2r+1, 2m+1}, P_{2r}^m, P_{2r+1}^{2m+1}$ and $P_{\left\langle 2r,m\right\rangle}$ for all values of $r$ and $m$ are odd mean graphs.
Classification :
05C78
Keywords: Labeling, Odd mean labeling, Odd mean graphs
Keywords: Labeling, Odd mean labeling, Odd mean graphs
@article{KJM_2012_36_1_a14,
author = {R. Vasuki and A. Nagarajan},
title = {Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$},
journal = {Kragujevac Journal of Mathematics},
pages = {141 },
year = {2012},
volume = {36},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/}
}
TY - JOUR
AU - R. Vasuki
AU - A. Nagarajan
TI - Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
JO - Kragujevac Journal of Mathematics
PY - 2012
SP - 141
VL - 36
IS - 1
UR - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/
LA - en
ID - KJM_2012_36_1_a14
ER -
R. Vasuki; A. Nagarajan. Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/