Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G(V,E)$ be a graph with $p$ vertices and $q$ edges. A graph $G$ is said to be odd mean if there exists a function $f:V(G)\rightarrow \{0,1,2,3,\dots,2q-1\}$ satisfying $f$ is $1-1$ and the induced map $f^*:E(G)\rightarrow\{1,3,5,\dots,2q-1\}$ defined by \begin{equation*} f^*(uv)=eft\{\begin{array}{ll} \frac{f(u)+f(v)}{2}\quad\mbox{if $f(u)+f(v)$ is even} [2mm] \frac{f(u)+f(v)+1}{2}\quad\mbox{if $f(u)+f(v)$ is odd}\end{array}\right. \end{equation*} is a bijection. If a graph $G$ admits an odd mean labeling then $G$ is called an odd mean graph. In this paper we study the odd meanness of the class of graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$ and we prove that the graphs $P_{2r,m}, P_{2r+1, 2m+1}, P_{2r}^m, P_{2r+1}^{2m+1}$ and $P_{\left\langle 2r,m\right\rangle}$ for all values of $r$ and $m$ are odd mean graphs.
Classification : 05C78
Keywords: Labeling, Odd mean labeling, Odd mean graphs
@article{KJM_2012_36_1_a14,
     author = {R. Vasuki and A. Nagarajan},
     title = {Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {141 },
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/}
}
TY  - JOUR
AU  - R. Vasuki
AU  - A. Nagarajan
TI  - Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 141 
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/
LA  - en
ID  - KJM_2012_36_1_a14
ER  - 
%0 Journal Article
%A R. Vasuki
%A A. Nagarajan
%T Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
%J Kragujevac Journal of Mathematics
%D 2012
%P 141 
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/
%G en
%F KJM_2012_36_1_a14
R. Vasuki; A. Nagarajan. Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/