Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G(V,E)$ be a graph with $p$ vertices and $q$ edges. A graph $G$ is said to be odd mean if there exists a function $f:V(G)\rightarrow \{0,1,2,3,\dots,2q-1\}$ satisfying $f$ is $1-1$ and the induced map $f^*:E(G)\rightarrow\{1,3,5,\dots,2q-1\}$ defined by \begin{equation*} f^*(uv)=eft\{\begin{array}{ll} \frac{f(u)+f(v)}{2}\quad\mbox{if $f(u)+f(v)$ is even} [2mm] \frac{f(u)+f(v)+1}{2}\quad\mbox{if $f(u)+f(v)$ is odd}\end{array}\right. \end{equation*} is a bijection. If a graph $G$ admits an odd mean labeling then $G$ is called an odd mean graph. In this paper we study the odd meanness of the class of graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$ and we prove that the graphs $P_{2r,m}, P_{2r+1, 2m+1}, P_{2r}^m, P_{2r+1}^{2m+1}$ and $P_{\left\langle 2r,m\right\rangle}$ for all values of $r$ and $m$ are odd mean graphs.
Classification : 05C78
Keywords: Labeling, Odd mean labeling, Odd mean graphs
@article{KJM_2012_36_1_a14,
     author = {R. Vasuki and A. Nagarajan},
     title = {Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {141 },
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/}
}
TY  - JOUR
AU  - R. Vasuki
AU  - A. Nagarajan
TI  - Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
JO  - Kragujevac Journal of Mathematics
PY  - 2012
SP  - 141 
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/
LA  - en
ID  - KJM_2012_36_1_a14
ER  - 
%0 Journal Article
%A R. Vasuki
%A A. Nagarajan
%T Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$
%J Kragujevac Journal of Mathematics
%D 2012
%P 141 
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/
%G en
%F KJM_2012_36_1_a14
R. Vasuki; A. Nagarajan. Odd mean labeling of the graphs $P_{a,b}, P_a^b$ and $P_{\left\langle 2a\right\rangle}^b$. Kragujevac Journal of Mathematics, Tome 36 (2012) no. 1, p. 141 . http://geodesic.mathdoc.fr/item/KJM_2012_36_1_a14/