Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 3, p. 387 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper we derive some subordination and superordination results for $p$-valent functions in the open unit disk by using certain fractional derivative operator. Some special cases are also considered.
Classification : 30C45 26A33
Keywords: $p$-valent function, differential subordination, differential superordination, fractional derivative operators
@article{KJM_2011_35_3_a3,
     author = {Somia Muftah Amsheri and Valentina Zharkova},
     title = {Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator},
     journal = {Kragujevac Journal of Mathematics},
     pages = {387 },
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/}
}
TY  - JOUR
AU  - Somia Muftah Amsheri
AU  - Valentina Zharkova
TI  - Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator
JO  - Kragujevac Journal of Mathematics
PY  - 2011
SP  - 387 
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/
LA  - en
ID  - KJM_2011_35_3_a3
ER  - 
%0 Journal Article
%A Somia Muftah Amsheri
%A Valentina Zharkova
%T Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator
%J Kragujevac Journal of Mathematics
%D 2011
%P 387 
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/
%G en
%F KJM_2011_35_3_a3
Somia Muftah Amsheri; Valentina Zharkova. Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 3, p. 387 . http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/