Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 3, p. 387
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the present paper we derive some subordination and superordination results for $p$-valent functions in the open unit disk by using certain fractional derivative operator. Some special cases are also considered.
Classification :
30C45 26A33
Keywords: $p$-valent function, differential subordination, differential superordination, fractional derivative operators
Keywords: $p$-valent function, differential subordination, differential superordination, fractional derivative operators
@article{KJM_2011_35_3_a3,
author = {Somia Muftah Amsheri and Valentina Zharkova},
title = {Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator},
journal = {Kragujevac Journal of Mathematics},
pages = {387 },
year = {2011},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/}
}
TY - JOUR AU - Somia Muftah Amsheri AU - Valentina Zharkova TI - Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator JO - Kragujevac Journal of Mathematics PY - 2011 SP - 387 VL - 35 IS - 3 UR - http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/ LA - en ID - KJM_2011_35_3_a3 ER -
%0 Journal Article %A Somia Muftah Amsheri %A Valentina Zharkova %T Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator %J Kragujevac Journal of Mathematics %D 2011 %P 387 %V 35 %N 3 %U http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/ %G en %F KJM_2011_35_3_a3
Somia Muftah Amsheri; Valentina Zharkova. Differential sandwich theorems of $p$-valent functions associated with a certain fractional derivative operator. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 3, p. 387 . http://geodesic.mathdoc.fr/item/KJM_2011_35_3_a3/