Four series of hyperbolic space groups with simplicial domains, and their supergroups
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 303 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Hyperbolic space groups are isometry groups, acting discontinuously on the hyperbolic 3-space with compact fundamental domain. One possibility to classify them is to look for fundamental domains of these groups. Here are considered supergroups for four series of groups with simplicial fundamental domains. Considered simplices, denoted in [9] by $T_{19}$, $T_{46}$, $T_{59}$, belong to family F12, while $T_{31}$ belongs to F27.
Classification : 51M20 52C22 20H15 20F55
Keywords: Hyperbolic space group, Fundamental domain, Simplex, Trunc-simplex, Poincarè algorithm, Symmetries
@article{KJM_2011_35_2_a8,
     author = {Milica Stojanovi\'c},
     title = {Four series of hyperbolic space groups with simplicial domains, and their supergroups},
     journal = {Kragujevac Journal of Mathematics},
     pages = {303 },
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a8/}
}
TY  - JOUR
AU  - Milica Stojanović
TI  - Four series of hyperbolic space groups with simplicial domains, and their supergroups
JO  - Kragujevac Journal of Mathematics
PY  - 2011
SP  - 303 
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a8/
LA  - en
ID  - KJM_2011_35_2_a8
ER  - 
%0 Journal Article
%A Milica Stojanović
%T Four series of hyperbolic space groups with simplicial domains, and their supergroups
%J Kragujevac Journal of Mathematics
%D 2011
%P 303 
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a8/
%G en
%F KJM_2011_35_2_a8
Milica Stojanović. Four series of hyperbolic space groups with simplicial domains, and their supergroups. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 303 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a8/