Commutation formulas for $\delta$-differentiation in a generalized Finsler space
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 277
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this work we define a generalized Finsler space $\mathbb{GF}_N$ as $N$- dimensional differentiable manifold on which a non-symmetric basic tensor $g_{ij}(x,\dot{x})$ is defined by virtue (1.3). Some basic properties of $\mathbb{GF}_N$ are given ($\S1)$. Based on non-symmetry of basic tensor, we define $(\S2)$ two kinds of covariant derivative of a tensor in the Rund's sense and obtain 10 Ricci type identities. In these identities appear 3 curvature tensors and 15 magnitudes, which we call "curvature pseudotensors" in $\mathbb{GF}_N$. All mentioned curvature tensors and pseudotensors reduce to known curvature tensor in usual Finsler space $\mathbb{F}_N$. The cited Ricci type identities are proved by total induction method in a general case.
Classification :
53A45 53B05 53B40
Keywords: Generalized Finsler spaces, Ricci type identities, Covariant derivative, Non-symmetric connection, Curvature tensor, Curvature pseudotensor.
Keywords: Generalized Finsler spaces, Ricci type identities, Covariant derivative, Non-symmetric connection, Curvature tensor, Curvature pseudotensor.
@article{KJM_2011_35_2_a6,
author = {Svetislav M. Min\v{c}i\'c and Miljan Lj. Zlatanovi\'c},
title = {Commutation formulas for $\delta$-differentiation in a generalized {Finsler} space},
journal = {Kragujevac Journal of Mathematics},
pages = {277 },
year = {2011},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a6/}
}
TY - JOUR AU - Svetislav M. Minčić AU - Miljan Lj. Zlatanović TI - Commutation formulas for $\delta$-differentiation in a generalized Finsler space JO - Kragujevac Journal of Mathematics PY - 2011 SP - 277 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a6/ LA - en ID - KJM_2011_35_2_a6 ER -
Svetislav M. Minčić; Miljan Lj. Zlatanović. Commutation formulas for $\delta$-differentiation in a generalized Finsler space. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 277 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a6/