Higher-dimensional central projection into 2-plane with visibility and applications
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 249
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Applying $d$-dimensional projective spherical geometry $\mathcal{PS}^d(\mathbf{R},\mathbf{V}^{d+1},\boldsymbol{V}_{d+1})$, represented by the standard real $(d+1)$-vector space and its dual up to positive real factors as $\sim$ equivalence, the Grassmann algebra of $\mathbf{V}^{d+1}$ and of $\boldsymbol{V}_{d+1}$, respectively, represent the subspace structure of $\mathcal{PS}^d$ and of $\mathcal{P}^d$. Then the central projection from a $(d-3)$-centre to a $2$-screen can be discussed in a straightforward way, but interesting visibility problems occur, first in the case of $d = 4$ as a nice attractive application. So regular $4$-solids can be visualized in the Euclidean space $\mathbf{E}^4$ and non-Euclidean geometries, e.g. spherical $\mathbf{S}^4$ and hyperbolic $\mathbf{H}^4$ geometry. In a short report geodesics and geodesic spheres will also be illustrated in $\mathbf{H}^2\!\times\!\mathbf{R}$ and $\widetilde{\mathbf{S}\mathbf{L}_2\mathbf{R}}$ spaces by projective metric geometry.
Classification :
15A75 51N15 65D18 68U05 68U10
Keywords: Projective spherical space, Central projection in higher dimensions, Visibility algorithm, Non-Euclidean geometries by projective metrics
Keywords: Projective spherical space, Central projection in higher dimensions, Visibility algorithm, Non-Euclidean geometries by projective metrics
@article{KJM_2011_35_2_a4,
author = {J. Katona and E. Moln\'ar and I. Prok and J. Szirmai},
title = {Higher-dimensional central projection into 2-plane with visibility and applications},
journal = {Kragujevac Journal of Mathematics},
pages = {249 },
year = {2011},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a4/}
}
TY - JOUR AU - J. Katona AU - E. Molnár AU - I. Prok AU - J. Szirmai TI - Higher-dimensional central projection into 2-plane with visibility and applications JO - Kragujevac Journal of Mathematics PY - 2011 SP - 249 VL - 35 IS - 2 UR - http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a4/ LA - en ID - KJM_2011_35_2_a4 ER -
J. Katona; E. Molnár; I. Prok; J. Szirmai. Higher-dimensional central projection into 2-plane with visibility and applications. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 249 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a4/