Invariant structures on the 6-dimensional generalized Heisenberg group
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 209
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, using the theory of canonical structures on homogeneous $k$-symmetric spaces, we construct four left-invariant metric $f$-structures on the $6$-dimensional generalized Heisenberg group. It provides new invariant examples for the classes of nearly Kähler and Hermitian $f$-structures as well as almost Hermitian $G_1$-structures.
Classification :
53C15 53C30 22E25
Keywords: Almost Hermitian structure, $G_1$-structure, Invariant $f$-structure, Nearly Kähler $f$-structure, Homogeneous $k$-symmetric space, Generalized Heisenberg group
Keywords: Almost Hermitian structure, $G_1$-structure, Invariant $f$-structure, Nearly Kähler $f$-structure, Homogeneous $k$-symmetric space, Generalized Heisenberg group
@article{KJM_2011_35_2_a2,
author = {Vitaly V. Balashchenko},
title = {Invariant structures on the 6-dimensional generalized {Heisenberg} group},
journal = {Kragujevac Journal of Mathematics},
pages = {209 },
year = {2011},
volume = {35},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a2/}
}
Vitaly V. Balashchenko. Invariant structures on the 6-dimensional generalized Heisenberg group. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 2, p. 209 . http://geodesic.mathdoc.fr/item/KJM_2011_35_2_a2/