The $\chi^{2}$ sequence spaces defined by a modulus
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 39
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we introduce the following sequence spaces \begin{center}$\left\{x\in \chi^{2}: P-im_{k,\ell} um_{m=0}^{nfty} um_{n=0}^{nfty}a_{k\ell}^{mn}feft(eft(eft(m+n\right)!eft|x_{mn}\right|\right)^{\frac{1}{m+n}}\right)=0\right\}$ \end{center} and $\left\{x\in \Lambda^{2}: \sup_{k,\ell}\sum_{m=0}^{\infty}\sum_{m=0}^{\infty}a_{k \ell}^{mn}f\left(\left|x_{mn}\right|^{\frac{1}{m+n}}\right) \infty\right\}$ where $f$ is a modulus function and $A$ is a nonnegative four dimensional matrix. We establish the inclusion theorems between these spaces and also general properties are discussed.
Classification :
40A05 40C05 40D05
Keywords: Gai sequence, Analytic sequence, Modulus function, Double sequences
Keywords: Gai sequence, Analytic sequence, Modulus function, Double sequences
@article{KJM_2011_35_1_a3,
author = {Nagarajan Subramanian and Umakanta Misra and Vladimir Rako\v{c}evi\'c},
title = {The $\chi^{2}$ sequence spaces defined by a modulus},
journal = {Kragujevac Journal of Mathematics},
pages = {39 },
year = {2011},
volume = {35},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a3/}
}
Nagarajan Subramanian; Umakanta Misra; Vladimir Rakočević. The $\chi^{2}$ sequence spaces defined by a modulus. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 39 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a3/