Multipartite digraphs and mark sequences
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 151
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A $k$-partite $2$-digraph (or briefly multipartite 2-digraph(M2D)) is an orientation of a $k$-partite multigraph that is without loops and contains at most $2$ edges between any pair of vertices from distinct parts. Let $D = D(X_{1}, X_{2},\ldots, X_{k})$ be a $k$-partite $2$-digraph with parts $X_{i} = \{x_{i1}, x_{i2},\ldots, x_{in_{i}}\}$, $1 \leq i\leq k$. Let $d_{x_{ij}}^{+}$ and $d_{x_{ij}}^{-}$, $1eq jeq n_{i}$, be respectively the outdegree and indegree of a vertex $x_{ij}n X_{i}$. Define $p_{x_{ij}}$ (or simply $p_{ij}) =2eft(um_{t=1,teq i}^{k}n_{t}\right)+d_{x_{ij}}^{+}-d_{x_{ij}}^{-}$ as the mark (or $r$-score) of $x_{ij}$. In this paper, we characterize the marks of $k$-partite $2$-digraphs and obtain constructive and existence criterion for $k$ sequences of non-negative integers in non-decreasing order to be the mark sequences of some $k$-partite $2$-digraph.
Classification :
05C20
Keywords: Multipartite digraphs, Oriented graphs, Tournaments, Mark sequences, Oriented triples
Keywords: Multipartite digraphs, Oriented graphs, Tournaments, Mark sequences, Oriented triples
@article{KJM_2011_35_1_a12,
author = {Umatul Samee},
title = {Multipartite digraphs and mark sequences},
journal = {Kragujevac Journal of Mathematics},
pages = {151 },
year = {2011},
volume = {35},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a12/}
}
Umatul Samee. Multipartite digraphs and mark sequences. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 151 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a12/