Multipartite digraphs and mark sequences
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 151
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A $k$-partite $2$-digraph (or briefly multipartite 2-digraph(M2D)) is an orientation of a $k$-partite multigraph that is without loops and contains at most $2$ edges between any pair of vertices from distinct parts. Let $D = D(X_{1}, X_{2},\ldots, X_{k})$ be a $k$-partite $2$-digraph with parts $X_{i} = \{x_{i1}, x_{i2},\ldots, x_{in_{i}}\}$, $1 \leq i\leq k$. Let $d_{x_{ij}}^{+}$ and $d_{x_{ij}}^{-}$, $1eq jeq n_{i}$, be respectively the outdegree and indegree of a vertex $x_{ij}n X_{i}$. Define $p_{x_{ij}}$ (or simply $p_{ij}) =2eft(um_{t=1,teq i}^{k}n_{t}\right)+d_{x_{ij}}^{+}-d_{x_{ij}}^{-}$ as the mark (or $r$-score) of $x_{ij}$. In this paper, we characterize the marks of $k$-partite $2$-digraphs and obtain constructive and existence criterion for $k$ sequences of non-negative integers in non-decreasing order to be the mark sequences of some $k$-partite $2$-digraph.
Classification :
05C20
Keywords: Multipartite digraphs, Oriented graphs, Tournaments, Mark sequences, Oriented triples
Keywords: Multipartite digraphs, Oriented graphs, Tournaments, Mark sequences, Oriented triples
@article{KJM_2011_35_1_a12,
author = {Umatul Samee},
title = {Multipartite digraphs and mark sequences},
journal = {Kragujevac Journal of Mathematics},
pages = {151 },
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a12/}
}
Umatul Samee. Multipartite digraphs and mark sequences. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 151 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a12/