On a Bessack's inequality related to Opial's and Hardy's
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 145

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Bessack [2] in 1979 used Holder's inequality to obtain an integral inequality which has as special cases Opial's and Hardy's. Here, using mainly Jensen's inequality for convex functions, with a non-negative, non-decreasing function in the operator, we obtain an integral inequality which is similar to Bessaack's but now containing a refinement term. When $l'(x)$ in Bessack [2] and $f$ in Imoru and Adeagbo-Sheikh [4] are restricted to being non-decreasing, these two inequalities become special cases of our results.
Classification : 47H06 47H10
Keywords: Opial's, Hardy's, Jensen's and Bessack's Inequalities and convex function
@article{KJM_2011_35_1_a11,
     author = {A. G. Adeagbo-Sheikh and O. O. Fabelurin},
     title = {On a {Bessack's} inequality related to {Opial's} and {Hardy's}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {145 },
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a11/}
}
TY  - JOUR
AU  - A. G. Adeagbo-Sheikh
AU  - O. O. Fabelurin
TI  - On a Bessack's inequality related to Opial's and Hardy's
JO  - Kragujevac Journal of Mathematics
PY  - 2011
SP  - 145 
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a11/
LA  - en
ID  - KJM_2011_35_1_a11
ER  - 
%0 Journal Article
%A A. G. Adeagbo-Sheikh
%A O. O. Fabelurin
%T On a Bessack's inequality related to Opial's and Hardy's
%J Kragujevac Journal of Mathematics
%D 2011
%P 145 
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a11/
%G en
%F KJM_2011_35_1_a11
A. G. Adeagbo-Sheikh; O. O. Fabelurin. On a Bessack's inequality related to Opial's and Hardy's. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 145 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a11/