The improvement of the value distribution on $f+a(f')^{n}$
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 139
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $f(z)$ be a transcendental meromorphic function in the plane and let $a(\neq 0)$, $b$ be two finite complex numbers. Then for positive integer $n\geq 3$, we have $(n-1)T(r,f')eq3verline{N}(r,f)+4verline{N}(r,\frac{1}{f+a(f')^{n}-b})+S(r,f)$.
Classification :
30D35
Keywords: Meromorphic, Transcendental, Differential Polynomial, Value distribution
Keywords: Meromorphic, Transcendental, Differential Polynomial, Value distribution
@article{KJM_2011_35_1_a10,
author = {Shanpeng Zeng and Yan Yang and Yuesheng Wu},
title = {The improvement of the value distribution on $f+a(f')^{n}$},
journal = {Kragujevac Journal of Mathematics},
pages = {139 },
year = {2011},
volume = {35},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/}
}
Shanpeng Zeng; Yan Yang; Yuesheng Wu. The improvement of the value distribution on $f+a(f')^{n}$. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 139 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/