The improvement of the value distribution on $f+a(f')^{n}$
Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 139 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $f(z)$ be a transcendental meromorphic function in the plane and let $a(\neq 0)$, $b$ be two finite complex numbers. Then for positive integer $n\geq 3$, we have $(n-1)T(r,f')eq3verline{N}(r,f)+4verline{N}(r,\frac{1}{f+a(f')^{n}-b})+S(r,f)$.
Classification : 30D35
Keywords: Meromorphic, Transcendental, Differential Polynomial, Value distribution
@article{KJM_2011_35_1_a10,
     author = {Shanpeng Zeng and Yan Yang and Yuesheng Wu},
     title = {The improvement of the value distribution on $f+a(f')^{n}$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {139 },
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/}
}
TY  - JOUR
AU  - Shanpeng Zeng
AU  - Yan Yang
AU  - Yuesheng Wu
TI  - The improvement of the value distribution on $f+a(f')^{n}$
JO  - Kragujevac Journal of Mathematics
PY  - 2011
SP  - 139 
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/
LA  - en
ID  - KJM_2011_35_1_a10
ER  - 
%0 Journal Article
%A Shanpeng Zeng
%A Yan Yang
%A Yuesheng Wu
%T The improvement of the value distribution on $f+a(f')^{n}$
%J Kragujevac Journal of Mathematics
%D 2011
%P 139 
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/
%G en
%F KJM_2011_35_1_a10
Shanpeng Zeng; Yan Yang; Yuesheng Wu. The improvement of the value distribution on $f+a(f')^{n}$. Kragujevac Journal of Mathematics, Tome 35 (2011) no. 1, p. 139 . http://geodesic.mathdoc.fr/item/KJM_2011_35_1_a10/