Affine Invariant $L$-systems
Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

The purpose of this article is to investigate if the $L$-systems introduced and developed mainly by Lindenmayer, and Prusinkiewicz [8]—[12] possess affine invariance property. The main result given in Theorem 1 establishes a negative answer.
@article{KJM_2010_34_1_a3,
     author = {Ljubi\v{s}a Koci\'c and Marija Rafajlovi\'c},
     title = {Affine {Invariant} $L$-systems},
     journal = {Kragujevac Journal of Mathematics},
     pages = {39 - 49},
     year = {2010},
     volume = {34},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a3/}
}
TY  - JOUR
AU  - Ljubiša Kocić
AU  - Marija Rafajlović
TI  - Affine Invariant $L$-systems
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 39 
EP  -  49
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a3/
ID  - KJM_2010_34_1_a3
ER  - 
%0 Journal Article
%A Ljubiša Kocić
%A Marija Rafajlović
%T Affine Invariant $L$-systems
%J Kragujevac Journal of Mathematics
%D 2010
%P 39 - 49
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a3/
%F KJM_2010_34_1_a3
Ljubiša Kocić; Marija Rafajlović. Affine Invariant $L$-systems. Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a3/