Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$
Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
By computing non-vanishing dual Stiefel-Whitney classes of the incomplete real flag manifold of length 3, $\mathbb{R} F(1,1,1,n-3)$, $n>4$, we obtain non-immersion and non-embedding results for the manifold and give solution to the immersion / embedding problem for $n=5, 6$ and $7$ by showing that Lam's estimate are best possible for these.
@article{KJM_2010_34_1_a2,
author = {Deborah Olayide A. Ajayi},
title = {Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$},
journal = {Kragujevac Journal of Mathematics},
pages = {31 - 38},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/}
}
Deborah Olayide A. Ajayi. Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$. Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/