Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$
Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

By computing non-vanishing dual Stiefel-Whitney classes of the incomplete real flag manifold of length 3, $\mathbb{R} F(1,1,1,n-3)$, $n>4$, we obtain non-immersion and non-embedding results for the manifold and give solution to the immersion / embedding problem for $n=5, 6$ and $7$ by showing that Lam's estimate are best possible for these.
@article{KJM_2010_34_1_a2,
     author = {Deborah Olayide A. Ajayi},
     title = {Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {31 - 38},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/}
}
TY  - JOUR
AU  - Deborah Olayide A. Ajayi
TI  - Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 31 
EP  -  38
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/
ID  - KJM_2010_34_1_a2
ER  - 
%0 Journal Article
%A Deborah Olayide A. Ajayi
%T Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$
%J Kragujevac Journal of Mathematics
%D 2010
%P 31 - 38
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/
%F KJM_2010_34_1_a2
Deborah Olayide A. Ajayi. Nonimmersion results for the real flag manifolds $\mathbb{R} F(1,1,1,n-3)$. Kragujevac Journal of Mathematics, Tome 34 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_34_1_a2/