Application of fixed point theorem to best simultaneous approximation in convex metric spaces
Kragujevac Journal of Mathematics, Tome 33 (2010), p. 107 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present existence of common fixed point results as best simultaneous approximation for uniformly $\mathcal{R}$-subweakly mappings on non-starshaped domains in convex spaces. This work provides extension as well as substantial improvement of some results in the existing literature.
Classification : 41A50 47H10 54H25
Keywords: Best approximant, Best simultaneous approximant, Convex metric space, Demiclosed mapping, Fixed point, Nonexpansive mapping, Uniformly asymptotically regular, Asymptotically ${\mathcal{S}}$-nonexpansive.
@article{KJM_2010_33_a9,
     author = {Hemant Kumar Nashine},
     title = {Application of fixed point theorem to best simultaneous approximation in convex metric spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {107 },
     publisher = {mathdoc},
     volume = {33},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_33_a9/}
}
TY  - JOUR
AU  - Hemant Kumar Nashine
TI  - Application of fixed point theorem to best simultaneous approximation in convex metric spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 107 
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_33_a9/
LA  - en
ID  - KJM_2010_33_a9
ER  - 
%0 Journal Article
%A Hemant Kumar Nashine
%T Application of fixed point theorem to best simultaneous approximation in convex metric spaces
%J Kragujevac Journal of Mathematics
%D 2010
%P 107 
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_33_a9/
%G en
%F KJM_2010_33_a9
Hemant Kumar Nashine. Application of fixed point theorem to best simultaneous approximation in convex metric spaces. Kragujevac Journal of Mathematics, Tome 33 (2010), p. 107 . http://geodesic.mathdoc.fr/item/KJM_2010_33_a9/