Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
Kragujevac Journal of Mathematics, Tome 33 (2010), p. 83
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form $t{...}{X}+Aḍot{X}+B\dot{X}+H(X)=P(t,X,\dot{X},ḍot{X}),$ where $A, B$ are constant symmetric $n\times n$ matrices, $X, H(X)$ and $P(t,X,\dot{X},\ddot{X})$ are real $n\times n$ matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that $H(X)$ be differentiable.
Classification :
34C11 34D20
Keywords: Matrix differential equation, Lyapunov function, Boundedness
Keywords: Matrix differential equation, Lyapunov function, Boundedness
@article{KJM_2010_33_a6,
author = {M. O. Omeike and A. U. Afuwape},
title = {Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations},
journal = {Kragujevac Journal of Mathematics},
pages = {83 },
year = {2010},
volume = {33},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2010_33_a6/}
}
TY - JOUR AU - M. O. Omeike AU - A. U. Afuwape TI - Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations JO - Kragujevac Journal of Mathematics PY - 2010 SP - 83 VL - 33 UR - http://geodesic.mathdoc.fr/item/KJM_2010_33_a6/ LA - en ID - KJM_2010_33_a6 ER -
M. O. Omeike; A. U. Afuwape. Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations. Kragujevac Journal of Mathematics, Tome 33 (2010), p. 83 . http://geodesic.mathdoc.fr/item/KJM_2010_33_a6/