Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form $$t{...}{X}+Aḍot{X}+B\dot{X}+H(X)=P(t,X,\dot{X},ḍot{X}),$$ where $A, B$ are constant symmetric $n\times n$ matrices, $X, H(X)$ and $P(t,X,\dot{X},\ddot{X})$ are real $n\times n$ matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that $H(X)$ be differentiable.
@article{KJM_2010_33_1_a6,
     author = {M. O. Omeike and A. U. Afuwape},
     title = {Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations},
     journal = {Kragujevac Journal of Mathematics},
     pages = {83 - 94},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/}
}
TY  - JOUR
AU  - M. O. Omeike
AU  - A. U. Afuwape
TI  - Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 83 
EP  -  94
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/
ID  - KJM_2010_33_1_a6
ER  - 
%0 Journal Article
%A M. O. Omeike
%A A. U. Afuwape
%T Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
%J Kragujevac Journal of Mathematics
%D 2010
%P 83 - 94
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/
%F KJM_2010_33_1_a6
M. O. Omeike; A. U. Afuwape. Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations. Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/