Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form $$t{...}{X}+Aḍot{X}+B\dot{X}+H(X)=P(t,X,\dot{X},ḍot{X}),$$ where $A, B$ are constant symmetric $n\times n$ matrices, $X, H(X)$ and $P(t,X,\dot{X},\ddot{X})$ are real $n\times n$ matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that $H(X)$ be differentiable.
@article{KJM_2010_33_1_a6,
author = {M. O. Omeike and A. U. Afuwape},
title = {Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations},
journal = {Kragujevac Journal of Mathematics},
pages = {83 - 94},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/}
}
TY - JOUR AU - M. O. Omeike AU - A. U. Afuwape TI - Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations JO - Kragujevac Journal of Mathematics PY - 2010 SP - 83 EP - 94 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/ ID - KJM_2010_33_1_a6 ER -
%0 Journal Article %A M. O. Omeike %A A. U. Afuwape %T Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations %J Kragujevac Journal of Mathematics %D 2010 %P 83 - 94 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/ %F KJM_2010_33_1_a6
M. O. Omeike; A. U. Afuwape. Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations. Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/