Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form $$t{...}{X}+Aḍot{X}+B\dot{X}+H(X)=P(t,X,\dot{X},ḍot{X}),$$ where $A, B$ are constant symmetric $n\times n$ matrices, $X, H(X)$ and $P(t,X,\dot{X},\ddot{X})$ are real $n\times n$ matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that $H(X)$ be differentiable.
@article{KJM_2010_33_1_a6,
     author = {M. O. Omeike and A. U. Afuwape},
     title = {Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations},
     journal = {Kragujevac Journal of Mathematics},
     pages = {83 - 94},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/}
}
TY  - JOUR
AU  - M. O. Omeike
AU  - A. U. Afuwape
TI  - Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
JO  - Kragujevac Journal of Mathematics
PY  - 2010
SP  - 83 
EP  -  94
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/
ID  - KJM_2010_33_1_a6
ER  - 
%0 Journal Article
%A M. O. Omeike
%A A. U. Afuwape
%T Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations
%J Kragujevac Journal of Mathematics
%D 2010
%P 83 - 94
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/
%F KJM_2010_33_1_a6
M. O. Omeike; A. U. Afuwape. Ultimate boundedness results for solutions of certain third order nonlinear matrix differential equations. Kragujevac Journal of Mathematics, Tome 33 (2010) no. 1. http://geodesic.mathdoc.fr/item/KJM_2010_33_1_a6/