The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
Kragujevac Journal of Mathematics, Tome 32 (2009), p. 109 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $n$ and $k$ be two nonnegative integers with $n>2k$, this paper presents the first to $(k+1)$-th smallest Wiener indices, and the first to $(k+1)$-th smallest hyper-Wiener indices among all connected graphs of order $n$, respectively.
Classification : 05C12 05C40 05C35
Keywords: Wiener index, hyper-Wiener index, distance
@article{KJM_2009_32_a9,
     author = {Liu Mu-huo and Xuezhong Tan},
     title = {The first to $(k+1)$-th smallest {Wiener} {(hyper-Wiener)} indices of connected graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {109 },
     publisher = {mathdoc},
     volume = {32},
     year = {2009},
     zbl = {1199.05091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_a9/}
}
TY  - JOUR
AU  - Liu Mu-huo
AU  - Xuezhong Tan
TI  - The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 109 
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_a9/
LA  - en
ID  - KJM_2009_32_a9
ER  - 
%0 Journal Article
%A Liu Mu-huo
%A Xuezhong Tan
%T The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 109 
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_a9/
%G en
%F KJM_2009_32_a9
Liu Mu-huo; Xuezhong Tan. The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs. Kragujevac Journal of Mathematics, Tome 32 (2009), p. 109 . http://geodesic.mathdoc.fr/item/KJM_2009_32_a9/