$L_{\bbA P}^{\text{rat}}$ logic and Completeness Theorem
Kragujevac Journal of Mathematics, Tome 32 (2009), p. 149 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

To the list of axioms of $L_{\bbA P}$ logic is added axiom which will provide that measures on probability models have only rational values of $[0,1]$ interval. Completeness Theorem is proved.
Classification : 03C70 03C65
Keywords: Admissible set, set of rational numbers, completeness
@article{KJM_2009_32_a14,
     author = {Vladimir Risti\'c},
     title = {$L_{\bbA P}^{\text{rat}}$ logic and {Completeness} {Theorem}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {149 },
     publisher = {mathdoc},
     volume = {32},
     year = {2009},
     zbl = {1224.03006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_a14/}
}
TY  - JOUR
AU  - Vladimir Ristić
TI  - $L_{\bbA P}^{\text{rat}}$ logic and Completeness Theorem
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 149 
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_a14/
LA  - en
ID  - KJM_2009_32_a14
ER  - 
%0 Journal Article
%A Vladimir Ristić
%T $L_{\bbA P}^{\text{rat}}$ logic and Completeness Theorem
%J Kragujevac Journal of Mathematics
%D 2009
%P 149 
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_a14/
%G en
%F KJM_2009_32_a14
Vladimir Ristić. $L_{\bbA P}^{\text{rat}}$ logic and Completeness Theorem. Kragujevac Journal of Mathematics, Tome 32 (2009), p. 149 . http://geodesic.mathdoc.fr/item/KJM_2009_32_a14/