The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $n$ and $k$ be two nonnegative integers with $n>2k$, this paper presents the first to $(k+1)$-th smallest Wiener indices, and the first to $(k+1)$-th smallest hyper-Wiener indices among all connected graphs of order $n$, respectively.
@article{KJM_2009_32_1_a9,
     author = {Liu Mu-huo and Xuezhong Tan},
     title = {The first to $(k+1)$-th smallest {Wiener} {(hyper-Wiener)} indices of connected graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {109 - 115},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     zbl = {1199.05091},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/}
}
TY  - JOUR
AU  - Liu Mu-huo
AU  - Xuezhong Tan
TI  - The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 109 
EP  -  115
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/
ID  - KJM_2009_32_1_a9
ER  - 
%0 Journal Article
%A Liu Mu-huo
%A Xuezhong Tan
%T The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 109 - 115
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/
%F KJM_2009_32_1_a9
Liu Mu-huo; Xuezhong Tan. The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/