The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $n$ and $k$ be two nonnegative integers with $n>2k$, this paper presents the first to $(k+1)$-th smallest Wiener indices, and the first to $(k+1)$-th smallest hyper-Wiener indices among all connected graphs of order $n$, respectively.
@article{KJM_2009_32_1_a9,
     author = {Liu Mu-huo and Xuezhong Tan},
     title = {The first to $(k+1)$-th smallest {Wiener} {(hyper-Wiener)} indices of connected graphs},
     journal = {Kragujevac Journal of Mathematics},
     pages = {109 - 115},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     zbl = {1199.05091},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/}
}
TY  - JOUR
AU  - Liu Mu-huo
AU  - Xuezhong Tan
TI  - The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 109 
EP  -  115
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/
ID  - KJM_2009_32_1_a9
ER  - 
%0 Journal Article
%A Liu Mu-huo
%A Xuezhong Tan
%T The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
%J Kragujevac Journal of Mathematics
%D 2009
%P 109 - 115
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/
%F KJM_2009_32_1_a9
Liu Mu-huo; Xuezhong Tan. The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/