The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $n$ and $k$ be two nonnegative integers with $n>2k$, this paper presents the first to $(k+1)$-th smallest Wiener indices, and the first to $(k+1)$-th smallest hyper-Wiener indices among all connected graphs of order $n$, respectively.
@article{KJM_2009_32_1_a9,
author = {Liu Mu-huo and Xuezhong Tan},
title = {The first to $(k+1)$-th smallest {Wiener} {(hyper-Wiener)} indices of connected graphs},
journal = {Kragujevac Journal of Mathematics},
pages = {109 - 115},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2009},
zbl = {1199.05091},
url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/}
}
TY - JOUR AU - Liu Mu-huo AU - Xuezhong Tan TI - The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs JO - Kragujevac Journal of Mathematics PY - 2009 SP - 109 EP - 115 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/ ID - KJM_2009_32_1_a9 ER -
Liu Mu-huo; Xuezhong Tan. The first to $(k+1)$-th smallest Wiener (hyper-Wiener) indices of connected graphs. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a9/