Probability logics with vector-valued measures
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Probability logic introduced by this paper is based on probability logic $L_{\bbA P}$. Measure ranges in probability models will not be linearly ordered, more precisely, measures will be vector--valued, having ranges $ \mathbb{Q}^{n} \cap { [ 0,1 ]}^{n}$. Axioms and rules of inference are adjusted to determine these types of measures. The completeness theorem for the introduced logic is proved.
@article{KJM_2009_32_1_a4,
     author = {Vladimir Risti\'c},
     title = {Probability logics with vector-valued measures},
     journal = {Kragujevac Journal of Mathematics},
     pages = {47 - 60},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     zbl = {1199.03009},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a4/}
}
TY  - JOUR
AU  - Vladimir Ristić
TI  - Probability logics with vector-valued measures
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 47 
EP  -  60
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a4/
ID  - KJM_2009_32_1_a4
ER  - 
%0 Journal Article
%A Vladimir Ristić
%T Probability logics with vector-valued measures
%J Kragujevac Journal of Mathematics
%D 2009
%P 47 - 60
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a4/
%F KJM_2009_32_1_a4
Vladimir Ristić. Probability logics with vector-valued measures. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a4/