Weighted Čebyšev type inequalities involving functions whose first derivatives belong to ${\bf L}_{p}(a,b)$, $\forall \left(1\leq p\infty \right)$
Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we establish some new weighted Čebyšev type integral inequalities, via certain integral inequalities, for the functions whose first derivatives belong to ${\bf L}_{p}(a,b)$ spaces $\forall 1\leq p\infty $ .
@article{KJM_2009_32_1_a1,
     author = {Farooq Ahmad and Nazir Ahmad Mir and Arif Rafiq},
     title = {Weighted {\v{C}eby\v{s}ev} type inequalities involving functions whose  first derivatives belong to ${\bf L}_{p}(a,b)$, $\forall  \left(1\leq p<\infty  \right)$},
     journal = {Kragujevac Journal of Mathematics},
     pages = {13 - 26},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a1/}
}
TY  - JOUR
AU  - Farooq Ahmad
AU  - Nazir Ahmad Mir
AU  - Arif Rafiq
TI  - Weighted Čebyšev type inequalities involving functions whose  first derivatives belong to ${\bf L}_{p}(a,b)$, $\forall  \left(1\leq p<\infty  \right)$
JO  - Kragujevac Journal of Mathematics
PY  - 2009
SP  - 13 
EP  -  26
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a1/
ID  - KJM_2009_32_1_a1
ER  - 
%0 Journal Article
%A Farooq Ahmad
%A Nazir Ahmad Mir
%A Arif Rafiq
%T Weighted Čebyšev type inequalities involving functions whose  first derivatives belong to ${\bf L}_{p}(a,b)$, $\forall  \left(1\leq p<\infty  \right)$
%J Kragujevac Journal of Mathematics
%D 2009
%P 13 - 26
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a1/
%F KJM_2009_32_1_a1
Farooq Ahmad; Nazir Ahmad Mir; Arif Rafiq. Weighted Čebyšev type inequalities involving functions whose  first derivatives belong to ${\bf L}_{p}(a,b)$, $\forall  \left(1\leq p<\infty  \right)$. Kragujevac Journal of Mathematics, Tome 32 (2009) no. 1. http://geodesic.mathdoc.fr/item/KJM_2009_32_1_a1/