A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
Kragujevac Journal of Mathematics, Tome 30 (2007), p. 27 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the Gagliardo--Nirenberg-type multiplicative interpolation inequality \[ \|v\|_{�L^1({\mathbb R}^n)} �eq C \|v\|^{1/2}_{{\rm Lip}'({\mathbb R}^n)} \|v\|^{1/2}_{{\rm BV}({\mathbb R}^n)}\qquad \forall v \in {\rm Lip}'(\Rn)\cap {\rm BV}({\mathbb R}^n), \] where $C$ is a positive constant, independent of $v$. Here $\|\cdot\|_{{\rm Lip}'({\mathbb R}^n)}$ is the norm of the dual to the Lipschitz space ${\rm Lip}_{\,0}({\mathbb R}^n) := {\rm C}^{0,1}_0({\mathbb R}^n)={\rm C}^{0,1}(\Rn) \cap {\rm C}_0(\Rn)$ and $\|\cdot\|_{{\rm BV}({\mathbb R}^n)}$ signifies the norm in the space ${\rm BV}({\mathbb R}^n)$ consisting of functions of bounded variation on $\Rn$. We then use a local version of this inequality to derive an {\em a posteriori} error bound in the ${\rm L}^1(\Omega')$ norm, with $\bar\Omega' \subset\Omega=(0,1)^n$, for a finite element approximation to a boundary-value problem for a first-order linear hyperbolic equation, under the limited regularity requirement that the solution to the problem belongs to ${\rm BV}(\Omega)$.}
Classification : 46E35 65M99
Keywords: Function-space interpolation, Gagliardo-Nirenberg inequality, finite element method, a posteriori error analysis
@article{KJM_2007_30_a2,
     author = {Endre Suli},
     title = {A {Gagliardo-Nirenberg} inequality, with application to duality-based a posteriori estimation in the {L^1} norm},
     journal = {Kragujevac Journal of Mathematics},
     pages = {27 },
     publisher = {mathdoc},
     volume = {30},
     year = {2007},
     zbl = {1199.46086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_a2/}
}
TY  - JOUR
AU  - Endre Suli
TI  - A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
JO  - Kragujevac Journal of Mathematics
PY  - 2007
SP  - 27 
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2007_30_a2/
LA  - en
ID  - KJM_2007_30_a2
ER  - 
%0 Journal Article
%A Endre Suli
%T A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
%J Kragujevac Journal of Mathematics
%D 2007
%P 27 
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2007_30_a2/
%G en
%F KJM_2007_30_a2
Endre Suli. A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm. Kragujevac Journal of Mathematics, Tome 30 (2007), p. 27 . http://geodesic.mathdoc.fr/item/KJM_2007_30_a2/