The second isomorphism theorem on ordered set under antiorders
Kragujevac Journal of Mathematics, Tome 30 (2007), p. 235
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this article we give two new characteristics of quasi-antiorder relation on ordered set under antiorder.\\ The new results in this article is co-called the second isomorphism theorem on ordered sets under antiorders: Let $(X,=,\neq,\alpha)$ be an ordered set under antiorder $\alpha$, $\rho$ and $\sigma$ quasi-antiorders on $X$ such that $\sigma\subseteq\rho$. Then the relation $\sigma/\rho$, defined by $\sigma/\rho=\{(x(\rho\cup\rho^{-1}),y(\rho\cup\rho^{-1})\in X/(\rho\cup\rho^{-1})\times X/(\rho\cup\rho^{-1}):(x,y)\in\sigma\},$ is a quasi-antiorder on $X/(\rho\cup\rho^{-1})$ and $(X/(\rho\cup\rho^{-1}))/((\sigma/\rho)\cup(\sigma/\rho)^{-1})\cong X/(\sigma\cup\sigma^{-1})$ holds.\\ Let $\mathbf{A}=\{\tau: \tau$ is quasi-antiorder on $X$ such that $\tau\subset\sigma\}$. Let $\mathbf{B}$ be the family of all quasi-antiorder on $X/q$, where $q=\sigma\cup\sigma^{-1}$. We shall give connection between families $\mathbf{A}$ and $\mathbf{B}$. For $\tau\in\mathbf{A}$, we define a relation $\psi(\tau)=\{(aq,bq)\in X/q\times X/q:(a,b)\in\tau\}$. The mapping $\psi:\mathbf{A}\rightarrow\mathbf{B}$ is strongly extensional, injective and surjective mapping from $\mathbf{A}$ onto $\mathbf{B}$ and for $\tau, \mu\in\mathbf{A}$ we have $\tau\subseteq\mu$ if and only if $\psi(\tau)\subseteq\psi(\mu)$.
Classification :
03E04 20M99 03F55
Keywords: constructive set theory, set with apartness, antiorder, quasi-antiorder, isomorphism
Keywords: constructive set theory, set with apartness, antiorder, quasi-antiorder, isomorphism
@article{KJM_2007_30_a16,
author = {Daniel A. Romano},
title = {The second isomorphism theorem on ordered set under antiorders},
journal = {Kragujevac Journal of Mathematics},
pages = {235 },
year = {2007},
volume = {30},
zbl = {1199.03050},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_a16/}
}
Daniel A. Romano. The second isomorphism theorem on ordered set under antiorders. Kragujevac Journal of Mathematics, Tome 30 (2007), p. 235 . http://geodesic.mathdoc.fr/item/KJM_2007_30_a16/