Multiquasigroups and weighted projective planes
Kragujevac Journal of Mathematics, Tome 30 (2007), p. 211 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We introduce and study the notion of weighted projective planes which is a generalization of the usual projective plane. We compare them with totally symmetric $(n,m)$-quasigroups. We prove that a weighted projective plane $S(2, n + 1, n^2 + n + 1)$ iz equivalent to a totally symmetric $(2, n - 1)-$quasigroup.
Keywords: weighted projective planes, multiquasigroups, blocks designs, Steiner systems
@article{KJM_2007_30_a14,
     author = {Alija Mandak},
     title = {Multiquasigroups and weighted projective planes},
     journal = {Kragujevac Journal of Mathematics},
     pages = {211 },
     publisher = {mathdoc},
     volume = {30},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_a14/}
}
TY  - JOUR
AU  - Alija Mandak
TI  - Multiquasigroups and weighted projective planes
JO  - Kragujevac Journal of Mathematics
PY  - 2007
SP  - 211 
VL  - 30
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2007_30_a14/
LA  - en
ID  - KJM_2007_30_a14
ER  - 
%0 Journal Article
%A Alija Mandak
%T Multiquasigroups and weighted projective planes
%J Kragujevac Journal of Mathematics
%D 2007
%P 211 
%V 30
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2007_30_a14/
%G en
%F KJM_2007_30_a14
Alija Mandak. Multiquasigroups and weighted projective planes. Kragujevac Journal of Mathematics, Tome 30 (2007), p. 211 . http://geodesic.mathdoc.fr/item/KJM_2007_30_a14/