A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the Gagliardo--Nirenberg-type multiplicative interpolation inequality \[ \|v\|_{ŁL^1({\mathbb R}^n)} łeq C \|v\|^{1/2}_{{\rm Lip}'({\mathbb R}^n)} \|v\|^{1/2}_{{\rm BV}({\mathbb R}^n)}\qquad \forall v \in {\rm Lip}'(\Rn)\cap {\rm BV}({\mathbb R}^n), \] where $C$ is a positive constant, independent of $v$. Here $\|\cdot\|_{{\rm Lip}'({\mathbb R}^n)}$ is the norm of the dual to the Lipschitz space ${\rm Lip}_{\,0}({\mathbb R}^n) := {\rm C}^{0,1}_0({\mathbb R}^n)={\rm C}^{0,1}(\Rn) \cap {\rm C}_0(\Rn)$ and $\|\cdot\|_{{\rm BV}({\mathbb R}^n)}$ signifies the norm in the space ${\rm BV}({\mathbb R}^n)$ consisting of functions of bounded variation on $\Rn$. We then use a local version of this inequality to derive an {\em a posteriori} error bound in the ${\rm L}^1(\Omega')$ norm, with $\bar\Omega' \subset\Omega=(0,1)^n$, for a finite element approximation to a boundary-value problem for a first-order linear hyperbolic equation, under the limited regularity requirement that the solution to the problem belongs to ${\rm BV}(\Omega)$.}
@article{KJM_2007_30_1_a2,
     author = {Endre Suli},
     title = {A {Gagliardo-Nirenberg} inequality, with application to duality-based a posteriori estimation in the {L^1} norm},
     journal = {Kragujevac Journal of Mathematics},
     pages = {27 - 43},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2007},
     zbl = {1199.46086},
     url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a2/}
}
TY  - JOUR
AU  - Endre Suli
TI  - A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
JO  - Kragujevac Journal of Mathematics
PY  - 2007
SP  - 27 
EP  -  43
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a2/
ID  - KJM_2007_30_1_a2
ER  - 
%0 Journal Article
%A Endre Suli
%T A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm
%J Kragujevac Journal of Mathematics
%D 2007
%P 27 - 43
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a2/
%F KJM_2007_30_1_a2
Endre Suli. A Gagliardo-Nirenberg inequality, with application to duality-based a posteriori estimation in the L^1 norm. Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a2/