An error estimate for a numerical scheme for the compressible Navier-stokes system
Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The subject of this paper is an error estimate of the order $h^{1/2}$ in the $L^2$-norm for an explicit, fully discrete numerical scheme that approximates smooth solutions of the barotropic compressible fluid flow equations in the multidimensional case. Assuming some a-priori estimates for the discrete solution we derive an error estimate using a technique based upon stability results due to Dafermos \cite{Da} and DiPerna \cite{Di}, which were originally formulated for systems of conservation laws.
@article{KJM_2007_30_1_a19,
author = {Vladimir Jovanovi\'c},
title = {An error estimate for a numerical scheme for the compressible {Navier-stokes} system},
journal = {Kragujevac Journal of Mathematics},
pages = {263 - 275},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2007},
zbl = {1195.76151},
url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a19/}
}
TY - JOUR AU - Vladimir Jovanović TI - An error estimate for a numerical scheme for the compressible Navier-stokes system JO - Kragujevac Journal of Mathematics PY - 2007 SP - 263 EP - 275 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a19/ ID - KJM_2007_30_1_a19 ER -
Vladimir Jovanović. An error estimate for a numerical scheme for the compressible Navier-stokes system. Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a19/