The second isomorphism theorem on ordered set under antiorders
Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this article we give two new characteristics of quasi-antiorder relation on ordered set under antiorder.\\ The new results in this article is co-called the second isomorphism theorem on ordered sets under antiorders: Let $(X,=,\neq,\alpha)$ be an ordered set under antiorder $\alpha$, $\rho$ and $\sigma$ quasi-antiorders on $X$ such that $\sigma\subseteq\rho$. Then the relation $\sigma/\rho$, defined by $$\sigma/\rho=\{(x(\rho\cup\rho^{-1}),y(\rho\cup\rho^{-1})\in X/(\rho\cup\rho^{-1})\times X/(\rho\cup\rho^{-1}):(x,y)\in\sigma\},$$ is a quasi-antiorder on $X/(\rho\cup\rho^{-1})$ and $(X/(\rho\cup\rho^{-1}))/((\sigma/\rho)\cup(\sigma/\rho)^{-1})\cong X/(\sigma\cup\sigma^{-1})$ holds.\\ Let $\mathbf{A}=\{\tau: \tau$ is quasi-antiorder on $X$ such that $\tau\subset\sigma\}$. Let $\mathbf{B}$ be the family of all quasi-antiorder on $X/q$, where $q=\sigma\cup\sigma^{-1}$. We shall give connection between families $\mathbf{A}$ and $\mathbf{B}$. For $\tau\in\mathbf{A}$, we define a relation $\psi(\tau)=\{(aq,bq)\in X/q\times X/q:(a,b)\in\tau\}$. The mapping $\psi:\mathbf{A}\rightarrow\mathbf{B}$ is strongly extensional, injective and surjective mapping from $\mathbf{A}$ onto $\mathbf{B}$ and for $\tau, \mu\in\mathbf{A}$ we have $\tau\subseteq\mu$ if and only if $\psi(\tau)\subseteq\psi(\mu)$.
@article{KJM_2007_30_1_a16,
     author = {Daniel A. Romano},
     title = {The second isomorphism theorem on ordered set under antiorders},
     journal = {Kragujevac Journal of Mathematics},
     pages = {235 - 242},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2007},
     zbl = {1199.03050},
     url = {http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a16/}
}
TY  - JOUR
AU  - Daniel A. Romano
TI  - The second isomorphism theorem on ordered set under antiorders
JO  - Kragujevac Journal of Mathematics
PY  - 2007
SP  - 235 
EP  -  242
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a16/
ID  - KJM_2007_30_1_a16
ER  - 
%0 Journal Article
%A Daniel A. Romano
%T The second isomorphism theorem on ordered set under antiorders
%J Kragujevac Journal of Mathematics
%D 2007
%P 235 - 242
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a16/
%F KJM_2007_30_1_a16
Daniel A. Romano. The second isomorphism theorem on ordered set under antiorders. Kragujevac Journal of Mathematics, Tome 30 (2007) no. 1. http://geodesic.mathdoc.fr/item/KJM_2007_30_1_a16/