Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term
Kragujevac Journal of Mathematics, Tome 29 (2006), p. 151
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper is concerned with the existence of bounded and $L^2-$solutions to equations of the form $\stackrel{...}x+a(t)f(\dot{x})\ddot{x}+b(t)g(x)\dot{x}+c(t,x)= e(t),\leqno (*)$ where $e(t)$ is a continuous square integrable function. We obtain sufficient conditions which guarantee that all solutions of the equation $(*)$ are bounded are in $L^{2}[0,\infty)$.
@article{KJM_2006_29_a14,
author = {Babatunde Sunday Ogundare and Joseph Ayanrionla Ayanjinmi and Olufemi Adeyinka Adesina},
title = {Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term},
journal = {Kragujevac Journal of Mathematics},
pages = {151 },
year = {2006},
volume = {29},
zbl = {1143.34021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_a14/}
}
TY - JOUR AU - Babatunde Sunday Ogundare AU - Joseph Ayanrionla Ayanjinmi AU - Olufemi Adeyinka Adesina TI - Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term JO - Kragujevac Journal of Mathematics PY - 2006 SP - 151 VL - 29 UR - http://geodesic.mathdoc.fr/item/KJM_2006_29_a14/ LA - en ID - KJM_2006_29_a14 ER -
%0 Journal Article %A Babatunde Sunday Ogundare %A Joseph Ayanrionla Ayanjinmi %A Olufemi Adeyinka Adesina %T Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term %J Kragujevac Journal of Mathematics %D 2006 %P 151 %V 29 %U http://geodesic.mathdoc.fr/item/KJM_2006_29_a14/ %G en %F KJM_2006_29_a14
Babatunde Sunday Ogundare; Joseph Ayanrionla Ayanjinmi; Olufemi Adeyinka Adesina. Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term. Kragujevac Journal of Mathematics, Tome 29 (2006), p. 151 . http://geodesic.mathdoc.fr/item/KJM_2006_29_a14/