Transitive 3-groups of degree $3^n$ (n = 2,3)
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we achieve a classification of transitive 3-groups of degrees 9 and 27. Other unique properties of these groups are discovered as a result.
@article{KJM_2006_29_1_a7,
     author = {M. S. Audu and A. Afolabi and E. Apine},
     title = {Transitive 3-groups of degree $3^n$ (n = 2,3)},
     journal = {Kragujevac Journal of Mathematics},
     pages = {71 - 89},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/}
}
TY  - JOUR
AU  - M. S. Audu
AU  - A. Afolabi
AU  - E. Apine
TI  - Transitive 3-groups of degree $3^n$ (n = 2,3)
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 71 
EP  -  89
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/
ID  - KJM_2006_29_1_a7
ER  - 
%0 Journal Article
%A M. S. Audu
%A A. Afolabi
%A E. Apine
%T Transitive 3-groups of degree $3^n$ (n = 2,3)
%J Kragujevac Journal of Mathematics
%D 2006
%P 71 - 89
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/
%F KJM_2006_29_1_a7
M. S. Audu; A. Afolabi; E. Apine. Transitive 3-groups of degree $3^n$ (n = 2,3). Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/