Transitive 3-groups of degree $3^n$ (n = 2,3)
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

In this paper we achieve a classification of transitive 3-groups of degrees 9 and 27. Other unique properties of these groups are discovered as a result.
@article{KJM_2006_29_1_a7,
     author = {M. S. Audu and A. Afolabi and E. Apine},
     title = {Transitive 3-groups of degree $3^n$ (n = 2,3)},
     journal = {Kragujevac Journal of Mathematics},
     pages = {71 - 89},
     year = {2006},
     volume = {29},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/}
}
TY  - JOUR
AU  - M. S. Audu
AU  - A. Afolabi
AU  - E. Apine
TI  - Transitive 3-groups of degree $3^n$ (n = 2,3)
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 71 
EP  -  89
VL  - 29
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/
ID  - KJM_2006_29_1_a7
ER  - 
%0 Journal Article
%A M. S. Audu
%A A. Afolabi
%A E. Apine
%T Transitive 3-groups of degree $3^n$ (n = 2,3)
%J Kragujevac Journal of Mathematics
%D 2006
%P 71 - 89
%V 29
%N 1
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/
%F KJM_2006_29_1_a7
M. S. Audu; A. Afolabi; E. Apine. Transitive 3-groups of degree $3^n$ (n = 2,3). Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a7/