A note on two dimensional Bratu problem
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, we examined the Bratu problem $$-\Delta U = łambda exp[U(x,y)],\quad x,y \in D, $$ $$U(x,y) = 0,\quad x,y \in \partial D, $$ in 2-dimensions, where $ \Delta$ is the Laplace operator. The non linear equation is solved using various methods including finite difference method, weighted residual method and analytical method. Both the near exact solution and weighted residual solution, provide the upper and the lower branch solutions while the finite difference method only give the lower branch solution.
@article{KJM_2006_29_1_a4,
     author = {S. A. Odejide and Y. A. S. Aregbesola},
     title = {A note on two dimensional {Bratu} problem},
     journal = {Kragujevac Journal of Mathematics},
     pages = {49 - 56},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     zbl = {1121.35315},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a4/}
}
TY  - JOUR
AU  - S. A. Odejide
AU  - Y. A. S. Aregbesola
TI  - A note on two dimensional Bratu problem
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 49 
EP  -  56
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a4/
ID  - KJM_2006_29_1_a4
ER  - 
%0 Journal Article
%A S. A. Odejide
%A Y. A. S. Aregbesola
%T A note on two dimensional Bratu problem
%J Kragujevac Journal of Mathematics
%D 2006
%P 49 - 56
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a4/
%F KJM_2006_29_1_a4
S. A. Odejide; Y. A. S. Aregbesola. A note on two dimensional Bratu problem. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a4/