Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $E$ be a real uniformly smooth Banach space, $T:E\rightarrow E$ be a generalized Lipschitzian and $\Phi$-strongly accretive mapping. It is shown that under suitable conditions the Ishikawa iterative process converges strongly to the unique solution of the equation $Tx=f$. A related result deals with approximation of the unique fixed point of a generalized Lipschitzian and $\Phi$-strongly pseudo-contractive mapping.
@article{KJM_2006_29_1_a19,
     author = {Xue Zhiqun and Wang Zhiming},
     title = {Ishikawa iterative sequence for the generalized {Lipschitzian} and {Phi-strongly} accretive mappings in {Banach} spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {203 - 213},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     zbl = {1122.47058},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/}
}
TY  - JOUR
AU  - Xue Zhiqun
AU  - Wang Zhiming
TI  - Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 203 
EP  -  213
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/
ID  - KJM_2006_29_1_a19
ER  - 
%0 Journal Article
%A Xue Zhiqun
%A Wang Zhiming
%T Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
%J Kragujevac Journal of Mathematics
%D 2006
%P 203 - 213
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/
%F KJM_2006_29_1_a19
Xue Zhiqun; Wang Zhiming. Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/