Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $E$ be a real uniformly smooth Banach space, $T:E\rightarrow E$ be a generalized Lipschitzian and $\Phi$-strongly accretive mapping. It is shown that under suitable conditions the Ishikawa iterative process converges strongly to the unique solution of the equation $Tx=f$. A related result deals with approximation of the unique fixed point of a generalized Lipschitzian and $\Phi$-strongly pseudo-contractive mapping.
@article{KJM_2006_29_1_a19,
     author = {Xue Zhiqun and Wang Zhiming},
     title = {Ishikawa iterative sequence for the generalized {Lipschitzian} and {Phi-strongly} accretive mappings in {Banach} spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {203 - 213},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     zbl = {1122.47058},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/}
}
TY  - JOUR
AU  - Xue Zhiqun
AU  - Wang Zhiming
TI  - Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 203 
EP  -  213
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/
ID  - KJM_2006_29_1_a19
ER  - 
%0 Journal Article
%A Xue Zhiqun
%A Wang Zhiming
%T Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces
%J Kragujevac Journal of Mathematics
%D 2006
%P 203 - 213
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/
%F KJM_2006_29_1_a19
Xue Zhiqun; Wang Zhiming. Ishikawa iterative sequence for the generalized Lipschitzian and Phi-strongly accretive mappings in Banach spaces. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a19/