Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This paper is concerned with the existence of bounded and $L^2-$solutions to equations of the form $$\stackrel{...}x+a(t)f(\dot{x})\ddot{x}+b(t)g(x)\dot{x}+c(t,x)= e(t),\leqno (*)$$ where $e(t)$ is a continuous square integrable function. We obtain sufficient conditions which guarantee that all solutions of the equation $(*)$ are bounded are in $L^{2}[0,\infty)$.
@article{KJM_2006_29_1_a14,
author = {Babatunde Sunday Ogundare and Joseph Ayanrionla Ayanjinmi and Olufemi Adeyinka Adesina},
title = {Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term},
journal = {Kragujevac Journal of Mathematics},
pages = {151 - 156},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2006},
zbl = {1143.34021},
url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a14/}
}
TY - JOUR AU - Babatunde Sunday Ogundare AU - Joseph Ayanrionla Ayanjinmi AU - Olufemi Adeyinka Adesina TI - Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term JO - Kragujevac Journal of Mathematics PY - 2006 SP - 151 EP - 156 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a14/ ID - KJM_2006_29_1_a14 ER -
%0 Journal Article %A Babatunde Sunday Ogundare %A Joseph Ayanrionla Ayanjinmi %A Olufemi Adeyinka Adesina %T Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term %J Kragujevac Journal of Mathematics %D 2006 %P 151 - 156 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a14/ %F KJM_2006_29_1_a14
Babatunde Sunday Ogundare; Joseph Ayanrionla Ayanjinmi; Olufemi Adeyinka Adesina. Bounded and $L^2$-solutions of certain third order non-linear differential equation with a square integrable forcing term. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a14/