The special function ش , II
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We describe a method for estimating the special function ^s> , in the complex cut plane $A = {\mathbf{C}}\backslash łeft( { - \infty ,0} \right]$, with a Stieltjes transform, which implies that the function ^s> is \textit{logarithmically completely monotonic}. To be complete, we find a nearly exact integral representation. At the end, we also establish that $1 \mathord{łeft/ {\vphantom {1 }} \right. \kern-\nulldelimiterspace} \mbox{^s>} łeft( x \right)$ is a complete Bernstein function and we give the representation formula which is analogous to the L\'evy-Khinchin formula.
@article{KJM_2006_29_1_a13,
     author = {Andrea Ossicini},
     title = {The special function ش , {II}},
     journal = {Kragujevac Journal of Mathematics},
     pages = {141 - 150},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a13/}
}
TY  - JOUR
AU  - Andrea Ossicini
TI  - The special function ش , II
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 141 
EP  -  150
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a13/
ID  - KJM_2006_29_1_a13
ER  - 
%0 Journal Article
%A Andrea Ossicini
%T The special function ش , II
%J Kragujevac Journal of Mathematics
%D 2006
%P 141 - 150
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a13/
%F KJM_2006_29_1_a13
Andrea Ossicini. The special function ش , II. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a13/