Ishikawa iterative process with errors for generalized Lipschitzian and Phi-accretive mappings in uniformly smooth Banach spaces
Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $E$ be a uniformly smooth real Banach space and $T:E\rightarrow E$ be generalized Lipschitz $\Phi$-accretive mapping with $\Phi(r)\rightarrow +\infty$ as $r\rightarrow +\infty$. Let $\left\{{a_n}\right\}$, $\left\{{b_n}\right\}$, $\left\{{c_n}\right\}$, $\left\{{a_n^\prime}\right\}$, $\left\{{b_n^\prime}\right\}$, $\left\{{c_n^\prime}\right\}$ be six real sequences in $[0,1]$ satisfying the following conditions: (i)$a_n+b_n+c_n=a_n^\prime+b_n^\prime+c_n^\prime=1$, (ii)$\lim\limits_{n\rightarrow \infty}b_n=\lim\limits_{n\rightarrow \infty}b_n^\prime =\lim\limits_{n\rightarrow \infty}c_n^\prime=0$, (iii)$\sum\limits_{n=0}^{\infty}b_n=\infty$, (iv)$c_n=o(b_n)$. For arbitrary $x_0\in E$, define the Ishikawa iterative process with errors $\left\{{x_n}\right\}_{n=0}^\infty$ by (ISE): $y_n=a_n^\prime x_n+b_n^\prime Sx_n+c_n^\prime v_n, x_{n+1}=a_n x_n+b_n Sy_n+c_n u_n, n\geq 0$. where $S:E\rightarrow E$ is defined by $Sx=f+x-Tx, f\in E, \forall x\in E$. Assume that the equation $Tx=f$ has solution and $\left\{{u_n}\right\}_{n=0}^\infty, \left\{{v_n}\right\}_{n=0}^\infty$ are arbitrary two bounded sequences in $E$. Then the sequence $\left\{{x_n}\right\}_{n=0}^\infty$ converges strongly to the unique solution of the equation $Tx=f$. A related result deals with approximation of fixed point of generalized Lipschitz $\Phi$-pseudocontractive mapping.
@article{KJM_2006_29_1_a1,
     author = {Xue Zhiqun},
     title = {Ishikawa iterative process with errors for generalized {Lipschitzian} and {Phi-accretive} mappings in uniformly smooth {Banach} spaces},
     journal = {Kragujevac Journal of Mathematics},
     pages = {17 - 27},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2006},
     zbl = {1122.47057},
     url = {http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a1/}
}
TY  - JOUR
AU  - Xue Zhiqun
TI  - Ishikawa iterative process with errors for generalized Lipschitzian and Phi-accretive mappings in uniformly smooth Banach spaces
JO  - Kragujevac Journal of Mathematics
PY  - 2006
SP  - 17 
EP  -  27
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a1/
ID  - KJM_2006_29_1_a1
ER  - 
%0 Journal Article
%A Xue Zhiqun
%T Ishikawa iterative process with errors for generalized Lipschitzian and Phi-accretive mappings in uniformly smooth Banach spaces
%J Kragujevac Journal of Mathematics
%D 2006
%P 17 - 27
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a1/
%F KJM_2006_29_1_a1
Xue Zhiqun. Ishikawa iterative process with errors for generalized Lipschitzian and Phi-accretive mappings in uniformly smooth Banach spaces. Kragujevac Journal of Mathematics, Tome 29 (2006) no. 1. http://geodesic.mathdoc.fr/item/KJM_2006_29_1_a1/