Conformally Osserman Lorentzian manifolds
Kragujevac Journal of Mathematics, Tome 28 (2005) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

CONFORMALLY OSSERMAN LORENTZIAN MANIFOLDSNovica Blazic Faculty of Mathematics, University of Belgrade,P. O. Box 550, 11001 Belgrade, Serbia and Montenegro Abstract. Let (Mn,g) be a pseudo-Riemannian manifold of which the Jacobi operator associated to the Weyl conformal curvature tensor has constant eigenvalues on the bundle of unit timelike (spacelike) tangent vectors (known as conformally Osserman manifolds). In this work we study the conformally Osserman Lorentzian manifolds. The established characterizations indicate the rigidity of conformally Osserman Lorentzian manifolds. We additionally illustrate that rigidity by reviewing analog recent characterizations in the case of metrics of other signatures.
@article{KJM_2005_28_1_a6,
     author = {Novica Bla\v{z}i\'c},
     title = {Conformally {Osserman} {Lorentzian} manifolds},
     journal = {Kragujevac Journal of Mathematics},
     pages = {87 - 96},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2005},
     zbl = {1143.53336},
     url = {http://geodesic.mathdoc.fr/item/KJM_2005_28_1_a6/}
}
TY  - JOUR
AU  - Novica Blažić
TI  - Conformally Osserman Lorentzian manifolds
JO  - Kragujevac Journal of Mathematics
PY  - 2005
SP  - 87 
EP  -  96
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2005_28_1_a6/
ID  - KJM_2005_28_1_a6
ER  - 
%0 Journal Article
%A Novica Blažić
%T Conformally Osserman Lorentzian manifolds
%J Kragujevac Journal of Mathematics
%D 2005
%P 87 - 96
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2005_28_1_a6/
%F KJM_2005_28_1_a6
Novica Blažić. Conformally Osserman Lorentzian manifolds. Kragujevac Journal of Mathematics, Tome 28 (2005) no. 1. http://geodesic.mathdoc.fr/item/KJM_2005_28_1_a6/